
Trading Toolbox™
User's Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Trading Toolbox™ User's Guide
© COPYRIGHT 2013–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2013 Online only New for Version 1.0 (Release 2013a)
September 2013 Online only Revised for Version 2.0 (Release 2013b)
March 2014 Online only Revised for Version 2.1 (Release 2014a)
October 2014 Online only Revised for Version 2.1.1 (Release 2014b)
March 2015 Online only Revised for Version 2.2 (Release 2015a)
September 2015 Online only Revised for Version 2.2.1 (Release 2015b)
March 2016 Online only Revised for Version 3.0 (Release 2016a)
September 2016 Online only Revised for Version 3.1 (Release 2016b)
March 2017 Online only Revised for Version 3.2 (Release 2017a)
September 2017 Online only Revised for Version 3.3 (Release 2017b)
March 2018 Online only Revised for Version 3.4 (Release 2018a)
September 2018 Online only Revised for Version 3.5 (Release 2018b)
March 2019 Online only Revised for Version 3.5.1 (Release 2019a)

Getting Started
1

Trading Toolbox Product Description . 1-2
Key Features . 1-2

Installation . 1-3
Bloomberg . 1-3
CQG . 1-3
FIX Flyer . 1-3
Interactive Brokers . 1-4
Trading Technologies . 1-4

Trading System Providers . 1-6
Supported Providers . 1-6
Connection Requirements . 1-6
Platform Requirements . 1-7

Create an Order Using IB Trader Workstation 1-8

Create an Order Using CQG . 1-12

Create an Order Using Bloomberg EMSX 1-14

Create an Order Using X_TRADER . 1-17

Create an Order Using FIX Flyer . 1-20

Writing and Running Custom Event Handler Functions with
Bloomberg EMSX . 1-25

Write a Custom Event Handler Function 1-25
Run a Custom Event Handler Function 1-25
Workflow for Custom Event Handler Function 1-26

v

Contents

Writing and Running Custom Event Handler Functions with
Interactive Brokers . 1-28

Write a Custom Event Handler Function 1-28
Run a Custom Event Handler Function 1-28
Workflow for Custom Event Handler Function 1-29

Workflow Models
2

Workflow for Bloomberg EMSX . 2-2

Workflows for Trading Technologies X_TRADER 2-4

Workflow for Interactive Brokers . 2-6
Request Interactive Brokers Market Data 2-6
Create Interactive Brokers Orders . 2-7
Request Interactive Brokers Informational Data 2-7

Workflow for CQG . 2-9

Transaction Cost Analysis
3

Analyze Trading Execution Results . 3-2

Post-Trade Analysis Metrics Definitions 3-6
Implementation Shortfall . 3-6
Alpha Capture . 3-7
Benchmark Costs . 3-7
Broker Value Add . 3-7
Z-Score . 3-7

Kissell Research Group Data Sets . 3-9
Basket Variables . 3-9
BrokerNames Variables . 3-9
TradeData Variables . 3-10
TradeDataCurrent and TradeDataHistorical Variables 3-11

vi Contents

PortfolioData Variables . 3-12
PostTradeData Variables . 3-13
TradeDataBackTest Variables . 3-16
TradeDataStressTest Variables . 3-17
TradeDataPortOpt Variables . 3-18
TradeDataTradeOpt Variables . 3-20
CovarianceData Table . 3-21
CovarianceTradeOpt Table . 3-21

Conduct Sensitivity Analysis to Estimate Trading Costs 3-23

Estimate Portfolio Liquidation Costs . 3-27

Optimize Percentage of Volume Trading Strategy 3-32

Optimize Trade Time Trading Strategy 3-36

Optimize Trade Schedule Trading Strategy 3-40

Estimate Trading Costs for Collection of Stocks 3-45

Conduct Back Test on Portfolio . 3-47

Conduct Stress Test on Portfolio . 3-50

Liquidate Dollar Value from Portfolio 3-56

Optimize Long Portfolio . 3-62

Determine Buy-Sell Imbalance Using Cost Index 3-66

Rank Broker Performance . 3-72

Optimize Trade Schedule Trading Strategy for Basket 3-79

Create Basket Summary and Efficient Trading Frontier 3-84

vii

Sample Code for Workflows
4

Listen for X_TRADER Price Updates . 4-2

Listen for X_TRADER Price Market Depth Updates 4-4

Submit X_TRADER Orders . 4-8

Create and Manage a Bloomberg EMSX Order 4-12

Create and Manage a Bloomberg EMSX Route 4-17

Manage a Bloomberg EMSX Order and Route 4-22

Create and Manage an Interactive Brokers Order 4-27

Request Interactive Brokers Historical Data 4-33

Request Interactive Brokers Real-Time Data 4-36

Create Interactive Brokers Combination Order 4-40

Create CQG Orders . 4-46

Request CQG Historical Data . 4-52

Request CQG Intraday Tick Data . 4-55

Request CQG Real-Time Data . 4-59

WDS Topics
5

Decide to Buy Shares Using Current and Historical WDS Data
. 5-2

Create Order Using Real-Time Snapshot WDS Data 5-4

viii Contents

Functions — Alphabetical List
6

ix

Getting Started

• “Trading Toolbox Product Description” on page 1-2
• “Installation” on page 1-3
• “Trading System Providers” on page 1-6
• “Create an Order Using IB Trader Workstation” on page 1-8
• “Create an Order Using CQG” on page 1-12
• “Create an Order Using Bloomberg EMSX” on page 1-14
• “Create an Order Using X_TRADER” on page 1-17
• “Create an Order Using FIX Flyer” on page 1-20
• “Writing and Running Custom Event Handler Functions with Bloomberg EMSX”

on page 1-25
• “Writing and Running Custom Event Handler Functions with Interactive Brokers”

on page 1-28

1

Trading Toolbox Product Description
Access prices, analyze transaction costs, and send orders to trading systems

Trading Toolbox provides functions for analyzing transaction costs, accessing trade and
quote pricing data, defining order types, and sending orders to financial trading markets.
The toolbox lets you integrate streaming and event-based data into MATLAB®, enabling
you to develop financial trading strategies and algorithms that analyze and react to the
market in real time. You can build algorithmic or automated trading strategies that work
across multiple asset classes, instrument types, and trading markets while integrating
with industry-standard or proprietary trade execution platforms.

With Trading Toolbox you can analyze and estimate transaction costs before placing an
order, as well as attribute costs post-trade. You can analyze transaction costs associated
with market impact, timing, liquidity, and price appreciation, and use cost curves to
minimize transaction costs for single assets or for a portfolio of assets.

Trading Toolbox lets you access real-time streams of tradable instrument data, including
quotes, volumes, trades, market depth, and instrument metadata. You can define order
types and specify order routing and filling procedures.

Key Features
• Market impact modeling and cost curve generation using Kissell Research Group

models
• Trading cost, sensitivity, and post-trade execution analysis
• Access to current, intraday, event-based, and real-time tradable instrument data
• Data filtering by instrument and exchange
• Definable order types and execution instructions
• Access to FIX-compliant trading systems using FIX Flyer™ Engine
• Support for Bloomberg® EMSX, Trading Technologies® X_TRADER®, CQG® Integrated

Client, and Interactive Brokers® TWS

1 Getting Started

1-2

Installation
In this section...
“Bloomberg” on page 1-3
“CQG” on page 1-3
“FIX Flyer” on page 1-3
“Interactive Brokers” on page 1-4
“Trading Technologies” on page 1-4

Bloomberg
To install Bloomberg EMSX from Bloomberg L.P., find the latest installation files at
https://www.bloomberg.com. You need a Bloomberg license to install and run
Bloomberg EMSX.

CQG
To install CQG, find the latest installation files at https://www.cqg.com. You need a
CQG license to install and run CQG.

The Trading Toolbox no longer supports connection using a 32-bit version of MATLAB. To
configure CQG to work with a 64-bit version of MATLAB, see https://www.mathworks.com/
matlabcentral/answers/223461-how-can-i-set-up-a-cqg-connection-using-the-trading-
toolbox-with-64-bit-version-of-matlab.

FIX Flyer
1 Install FIX Flyer. Find the latest installation files using the Files Provided by FIX

Flyer.
2 Download the zip file that contains the installation JAR files. Unzip the file.
3 Search the folders for the JAR file fix-flyer.jar and the folder named core. The

JAR file is located in the folder where FIX Flyer is installed. The JAR file points to the
folder core that contains the other required JAR files.

4 Add the JAR file fix-flyer.jar to the static Java® class path. Edit the
javaclasspath.txt file and enter the path to the file. For example, ..\FIXFlyer

 Installation

1-3

https://www.bloomberg.com
https://www.cqg.com
https://www.mathworks.com/matlabcentral/answers/223461-how-can-i-set-up-a-cqg-connection-using-the-trading-toolbox-with-64-bit-version-of-matlab
https://www.mathworks.com/matlabcentral/answers/223461-how-can-i-set-up-a-cqg-connection-using-the-trading-toolbox-with-64-bit-version-of-matlab
https://www.mathworks.com/matlabcentral/answers/223461-how-can-i-set-up-a-cqg-connection-using-the-trading-toolbox-with-64-bit-version-of-matlab
https://files.fixflyer.com/login
https://files.fixflyer.com/login

\fix-flyer-5.0.1\devkit\lib\fix-flyer.jar. This file path assumes an
installation of FIX Flyer version 5.0.1.

If you are running Linux® or Mac, the JAR file path has a different format. For
example, /FIXFlyer/fix-flyer-5.0.1/devkit/lib/fix-flyer.jar.

For details about modifying the static Java class path, see “Java Class Path”
(MATLAB).

You need a FIX Flyer license to install and run FIX Flyer.

Interactive Brokers
1 Download and install the IB Trader Workstation(SM) Desktop Trading Client. Find the

latest installation files at https://www.interactivebrokers.com/en/
index.php?f=552.

2 Download and install the Interactive Brokers API software. Find the latest installation
files at https://interactivebrokers.github.io/.

3 Configure IB Trader Workstation to enable connections. Follow these steps in IB
Trader Workstation:

a Select File > Global Configuration under Application Settings.
b Select API > Settings on the left side.
c Select Enable ActiveX and Socket Clients on the right side.
d Click Apply, then OK.
e Restart MATLAB and connect to IB Trader Workstation.

You need an Interactive Brokers license to install and run Interactive Brokers.

Trading Technologies
To install Trading Technologies, find the latest installation files at https://
www.tradingtechnologies.com. You need a Trading Technologies license to install
and run Trading Technologies.

See Also
cqg | emsx | fixflyer | ibtws | xtrdr

1 Getting Started

1-4

https://www.interactivebrokers.com/en/index.php?f=552
https://www.interactivebrokers.com/en/index.php?f=552
https://interactivebrokers.github.io/
https://www.tradingtechnologies.com
https://www.tradingtechnologies.com

Related Examples
• “Create an Order Using Bloomberg EMSX” on page 1-14
• “Create an Order Using CQG” on page 1-12
• “Create an Order Using FIX Flyer” on page 1-20
• “Create an Order Using IB Trader Workstation” on page 1-8
• “Create an Order Using X_TRADER” on page 1-17

 See Also

1-5

Trading System Providers
In this section...
“Supported Providers” on page 1-6
“Connection Requirements” on page 1-6
“Platform Requirements” on page 1-7

Trading Toolbox enables you to connect to various trading system providers. To create a
connection, ensure that you satisfy the license, connection, and platform requirements.

Supported Providers
This toolbox supports connections to financial trading systems provided by the following
corporations:

• Bloomberg EMSX from Bloomberg L.P. (https://www.bloomberg.com)

Note Only the Bloomberg Desktop API is supported.
• CQG (https://www.cqg.com)
• FIX Flyer (https://www.fixflyer.com/)
• IB Trader Workstation from Interactive Brokers (https://

www.interactivebrokers.com)

Note IB Trader Workstation versions 9.69 and 9.7 and later are supported.
• X_TRADER from Trading Technologies (https://www.tradingtechnologies.com)
• Wind Data Feed Services (WDS) from The Wind Information Co., Ltd. (http://

www.wind.com.cn/en/product/Wind.DataFeed.html)

See the MathWorks® website for the system requirements for connecting to these trading
systems.

Connection Requirements
To connect to these trading systems, additional requirements apply. The following data
service providers require you to install proprietary software on your PC:

1 Getting Started

1-6

https://www.bloomberg.com
https://www.cqg.com
https://www.fixflyer.com/
https://www.interactivebrokers.com
https://www.interactivebrokers.com
https://www.tradingtechnologies.com
http://www.wind.com.cn/en/product/Wind.DataFeed.html
http://www.wind.com.cn/en/product/Wind.DataFeed.html
https://www.mathworks.com/products/availability.html#TR

• Bloomberg EMSX

Note You need the Bloomberg Desktop software license for the host on which Trading
Toolbox and MATLAB software are running.

• CQG
• FIX Flyer
• Interactive Brokers IB Trader Workstation
• Trading Technologies X_TRADER
• WDS

You must have a valid license for required client software on your machine.

For more information about how to obtain required software, contact your trading system
sales representative.

Platform Requirements
The Trading Toolbox supports 64-bit Windows® only. However, transaction cost analysis
from the Kissell Research Group supports all platforms.

These data service providers work only with the Windows platform:

• Bloomberg EMSX
• CQG
• Interactive Brokers
• Trading Technologies X_TRADER
• WDS

 Trading System Providers

1-7

Create an Order Using IB Trader Workstation
Create a connection to the IB Trader Workstation℠ and create a market order based on
historical and current data for a security. You can also create orders for a different
instrument, such as a futures contract.

Before creating the connection, you must enter your credentials and run the IB Trader
Workstation℠ application.

To run this example, you must have the Financial Toolbox™ installed.

Run IB Trader Workstation℠ Application

Ensure the IB Trader Workstation℠ application is running, and that API connections are
enabled. Follow these steps in IB Trader Workstation℠.

1 To open the Trader Workstation Configuration (Simulated Trading) dialog box, select
File > Global Configuration.

2 Select API > Settings.
3 Ensure that the Enable ActiveX and Socket Clients check box is selected.

Connect to IB Trader Workstation℠

Connect to the IB Trader Workstation℠ and create connection ib using the local host and
default port number 7496.

ib = ibtws('',7496);

When the Accept incoming connection attempt message appears in the IB Trader
Workstation℠, click Yes.

Retrieve Historical and Current Data

Create the IB Trader Workstation℠ IContract object ibContract. This object specifies
the security. Retrieve data for Microsoft® stock. Specifying SMART as the exchange lets
Interactive Brokers® determine which venue to use for data retrieval. To clarify any
ambiguity, set the primary exchange for the destination to NASDAQ. To retrieve dollar-
denominated stock, set the currency type to USD. Setting currency type is useful when
stocks are dual-listed or multi-listed across different jurisdictions.

ibContract = ib.Handle.createContract;
ibContract.symbol = 'MSFT';

1 Getting Started

1-8

ibContract.secType = 'STK';
ibContract.exchange = 'SMART';
ibContract.primaryExchange = 'NASDAQ';
ibContract.currency = 'USD';

Define the date range for the last 20 business days, excluding today. To calculate the
appropriate start and end dates, this code uses the daysadd function from Financial
Toolbox™.

bizDayConvention = 13; % i.e. BUS/252
currentdate = today;
startDate = daysadd(currentdate,-20,bizDayConvention);
endDate = daysadd(currentdate,-1,bizDayConvention);

Retrieve historical data for the last 20 business days.

histTradeData = history(ib,ibContract,startDate,endDate);

The history function accepts additional parameters that let you obtain other historical
data such as option-implied volatility, historical volatility, bid prices, ask prices, or
midpoints. If you do not specify anything, last traded prices return by default.

Retrieve current price data from the contract.

currentData = getdata(ib,ibContract)

currentData =

 struct with fields:

 LAST_PRICE: 62.8500
 LAST_SIZE: 1
 VOLUME: 41273
 BID_PRICE: 62.8400
 BID_SIZE: 17
 ASK_PRICE: 62.8600
 ASK_SIZE: 12

Create Trade Market Order

The IB Trader Workstation℠ supports various order types, including basic types such as
limit orders, stop orders, and market orders.

 Create an Order Using IB Trader Workstation

1-9

Create the IB Trader Workstation℠ Iorder object ibMktOrder. This object specifies the
order. To buy shares, specify the action BUY. To specify buying 100 shares, set
totalQuantity to 100. To create a market order, specify the order type as MKT.

ibMktOrder = ib.Handle.createOrder;
ibMktOrder.action = 'BUY';
ibMktOrder.totalQuantity = 100;
ibMktOrder.orderType = 'MKT';

Set a unique order identifier and send the order to Interactive Brokers®.

id = orderid(ib);

result = createOrder(ib,ibContract,ibMktOrder,id)

result =

 struct with fields:

 STATUS: 'Submitted'
 FILLED: 0
 REMAINING: 100
 AVG_FILL_PRICE: 0
 PERM_ID: '1621177315'
 PARENT_ID: 0
 LAST_FILL_PRICE: 0
 CLIENT_ID: 0
 WHY_HELD: ''

Specify Different Instrument

You can trade various instruments using the IB Trader Workstation℠ API, including
equities, futures, options, futures options, and foreign currencies.

ibFutures is the E-mini Standard and Poor's 500 futures contract on the CME Globex
with a December 2013 expiry. Specify the symbol as ES, the security type as a futures
contract FUT, the expiry as a YYYYMM date format, the exchange as GLOBEX, and the
currency as USD.

ibFutures = ib.Handle.createContract;
ibFutures.symbol = 'ES';
ibFutures.secType = 'FUT';
ibFutures.expiry = '201312'; % Dec 2013

1 Getting Started

1-10

ibFutures.exchange = 'GLOBEX';
ibFutures.currency = 'USD';

Retrieve futures data and send orders using the getdata and createOrder functions.

Close IB Trader Workstation℠ Connection

close(ib)

See Also
close | createOrder | getdata | history | ibtws

Related Examples
• “Create Interactive Brokers Combination Order” on page 4-40
• “Create and Manage an Interactive Brokers Order” on page 4-27
• “Request Interactive Brokers Historical Data” on page 4-33
• “Request Interactive Brokers Real-Time Data” on page 4-36

More About
• “Workflow for Interactive Brokers” on page 2-6

External Websites
• https://www.interactivebrokers.com/en/software/api/api.htm

 See Also

1-11

https://www.interactivebrokers.com/en/software/api/api.htm

Create an Order Using CQG
This example shows how to connect to CQG and create a market order.

Connect to CQG
c = cqg;

Establish Event Handlers

Start the CQG session. Set up event handlers for instrument subscription, orders, and
associated events.

startUp(c)

streamEventNames = {'InstrumentSubscribed', ...
 'InstrumentChanged','IncorrectSymbol'};

for i = 1:length(streamEventNames)
 registerevent(c.Handle,{streamEventNames{i}, ...
 @(varargin)cqgrealtimeeventhandler(varargin{:})})
end

orderEventNames = {'AccountChanged','OrderChanged','AllOrdersCanceled'};

for i = 1:length(orderEventNames)
 registerevent(c.Handle,{orderEventNames{i}, ...
 @(varargin)cqgordereventhandler(varargin{:})})
end

Subscribe to Instrument

Subscribe to a security tied to the EURIBOR.

realtime(c,'F.US.IE')
pause(2)

Create CQGInstrument Object

To use the instrument for creating an order, import the instrument name
cqgInstrumentName into the current MATLAB workspace. Then, create the
CQGInstrument object cqgInst.

cqgInstrumentName = evalin('base','cqgInstrument');
cqgInst = c.Handle.Instruments.Item(cqgInstrumentName);

1 Getting Started

1-12

Set Up Account Credentials

Set the CQG flags to enable account information retrieval.

c.Handle.set('AccountSubscriptionLevel','aslNone');
c.Handle.set('AccountSubscriptionLevel','aslAccountUpdatesAndOrders');
pause(2)
accountHandle = c.Handle.Accounts.ItemByIndex(0);

Create Market Order

Create a market order that buys one share of the subscribed security cqgInst using the
account credentials accountHandle.

orderType = 1; % Market order flag
quantity = 1; % Positive quantity is Buy, negative is Sell
oMarket = createOrder(c,cqgInst,orderType,accountHandle,quantity);
oMarket.Place

Close CQG Connection

close(c)

See Also
close | cqg | createOrder | realtime | startUp

Related Examples
• “Create CQG Orders” on page 4-46
• “Request CQG Historical Data” on page 4-52
• “Request CQG Intraday Tick Data” on page 4-55
• “Request CQG Real-Time Data” on page 4-59

More About
• “Workflow for CQG” on page 2-9

External Websites
• CQG API Reference Guide

 See Also

1-13

https://partners.cqg.com/api-resources/technical-documentation

Create an Order Using Bloomberg EMSX
This example shows how to connect to Bloomberg EMSX and create and route a market
order.

For details about connecting to Bloomberg EMSX and creating orders, see the EMSX API
Programmer’s Guide.

Connect to Bloomberg EMSX

1 If you are using emsx for the first time, install a Java archive file from Bloomberg for
emsx and other Bloomberg commands to work correctly.

If you already have blpapi3.jar downloaded from Bloomberg, you can find it in
your Bloomberg folders at ..\blp\api\APIv3\JavaAPI\lib\blpapi3.jar
or ..\blp\api\APIv3\JavaAPI\v3.x\lib\blpapi3.jar. If you have
blpapi3.jar, go to step 3.

If blpapi3.jar is not downloaded from Bloomberg, then download it as follows:

a In your Bloomberg terminal, type WAPI {GO} to open the API Developer’s Help
Site screen.

b Click API Download Center, then click Desktop API.
c After downloading blpapi3.jar on your system, add it to the MATLAB Java

class path using the javaaddpath function.

Execute the javaaddpath function for every session of MATLAB. To avoid
executing the javaaddpath function at every session, add javaaddpath to
your startup.m file or add the full path for blpapi3.jar to your
javaclasspath.txt file. For details about javaclasspath.txt, see “Java
Class Path” (MATLAB). For details about editing your startup.m file, see
“Startup Options in MATLAB Startup File” (MATLAB).

2 Connect to the Bloomberg EMSX test service.

c = emsx('//blp/emapisvc_beta')

c =

 emsx with properties:

 Session: [1x1 com.bloomberglp.blpapi.Session]

1 Getting Started

1-14

 Service: [1x1 com.bloomberglp.blpapi.impl.aQ]
 Ipaddress: 'localhost'
 Port: 8194

MATLAB returns c as the connection to the Bloomberg EMSX test service with the
following:

• Bloomberg EMSX session object
• Bloomberg EMSX service object
• IP address of the machine running the Bloomberg EMSX test service
• Port number of the machine running the Bloomberg EMSX test service

Create Market Order Request

Create an order request structure order for a buy market order of 400 shares of IBM®.
Specify the broker as EFIX, use any hand instruction, and set the time in force to DAY.

order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_SIDE = 'BUY';
order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(400);
order.EMSX_BROKER = 'EFIX';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_TIF = 'DAY';

Create and Route Market Order

Create and route the market order using the Bloomberg EMSX connection c and order
request structure order.

events = createOrderAndRoute(c,order);

events =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order created and routed'

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

• Bloomberg EMSX order number

 Create an Order Using Bloomberg EMSX

1-15

• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Close Bloomberg EMSX Connection

close(c)

See Also
close | createOrderAndRoute | emsx

Related Examples
• “Create and Manage a Bloomberg EMSX Order” on page 4-12
• “Create and Manage a Bloomberg EMSX Route” on page 4-17
• “Manage a Bloomberg EMSX Order and Route” on page 4-22

More About
• “Workflow for Bloomberg EMSX” on page 2-2

External Websites
• EMSX API Programmers Guide

1 Getting Started

1-16

https://emsx-api-doc.readthedocs.io/en/latest/index.html

Create an Order Using X_TRADER
This example shows how to connect to Trading Technologies X_TRADER and create a
market order.

Connect to Trading Technologies X_TRADER

c = xtrdr;

Create Instrument for Contract

Create an instrument for a contract of CAISO NP15 EZ Gen Hub 5 MW Peak Calendar-
Day Real-Time LMP Futures with an expiration date of August 2014 on the Chicago
Mercantile Exchange.

createInstrument(c,'Exchange','CME','Product','2F',...
 'ProdType','Future','Contract','Aug14',...
 'Alias','SubmitOrderInstrument3')

Register Event Handler for Order Server

Register an event handler to check the order server status.

sExchange = c.Instrument.Exchange;
c.Gate.registerevent({'OnExchangeStateUpdate', ...
 @(varargin)ttorderserverstatus(varargin{:},sExchange)})

Create Order Set and Set Order Properties

Create an empty order set. Then, set order set properties. Setting the first property to
true (1) enables the X_TRADER API to send order rejection notifications. Setting the
second property to true (1) enables the X_TRADER API to add order pairs for all order
updates to the order tracker list in this order set. Setting the third property to
ORD_NOTIFY_NORMAL sets the X_TRADER API notification mode for order status events
to normal.

createOrderSet(c)

c.OrderSet(1).EnableOrderRejectData = 1;
c.OrderSet(1).EnableOrderUpdateData = 1;
c.OrderSet(1).OrderStatusNotifyMode = 'ORD_NOTIFY_NORMAL';

 Create an Order Using X_TRADER

1-17

Set Position Limit Checks

c.OrderSet(1).Set('NetLimits',false)

Register Event Handlers for Order Status

Register event handlers to track events associated with the order status.

registerevent(c.OrderSet(1),{'OnOrderFilled',...
 @(varargin)ttorderevent(varargin{:},c)})
registerevent(c.OrderSet(1),{'OnOrderRejected',...
 @(varargin)ttorderevent(varargin{:},c)})
registerevent(c.OrderSet(1),{'OnOrderSubmitted',...
 @(varargin)ttorderevent(varargin{:},c)})
registerevent(c.OrderSet(1),{'OnOrderDeleted',...
 @(varargin)ttorderevent(varargin{:},c)})

Enable Order Submission

Open the instrument for trading and enable the X_TRADER API to retrieve market depth
information when opening the instrument.

c.OrderSet(1).Open(1)

Build Order Profile with Existing Instrument

orderProfile = createOrderProfile(c,'Instrument',c.Instrument(1));

Set Customer Default Property

Assign the customer defaults for trading an instrument.

orderProfile.Customer = '<Default>';

Set Up Order Profile as Market Order

Set up the order profile as a market order for buying 225 shares.

orderProfile.Set('BuySell','Buy')
orderProfile.Set('Qty','225')
orderProfile.Set('OrderType','M')

Check Order Server Status

nCounter = 1;
while ~exist('bServerUp','var') && nCounter < 20

1 Getting Started

1-18

 % bServerUp is created by ttorderserverstatus
 pause(1)
 nCounter = nCounter + 1;
end

Verify Order Server Availability and Submit Order

if exist('bServerUp','var') && bServerUp
 % Submit the order
 submittedQuantity = c.OrderSet(1).SendOrder(orderProfile);
 disp(['Quantity Sent: ' num2str(submittedQuantity)])
else
 disp('Order server is down. Unable to submit order.')
end

The X_TRADER API submits the order to the exchange and returns the number of
contracts sent for lot-based contracts or the flow quantity sent for flow-based contracts in
the output argument submittedQuantity.

Close Trading Technologies X_TRADER Connection

close(c)

See Also
close | createInstrument | createOrderProfile | createOrderSet | xtrdr

Related Examples
• “Listen for X_TRADER Price Updates” on page 4-2
• “Listen for X_TRADER Price Market Depth Updates” on page 4-4
• “Submit X_TRADER Orders” on page 4-8

More About
• “Workflows for Trading Technologies X_TRADER” on page 2-4

External Websites
• https://developer.tradingtechnologies.com/x_trader-api

 See Also

1-19

https://developer.tradingtechnologies.com/x_trader-api

Create an Order Using FIX Flyer
This example shows how to create a FIX Flyer connection, process event data for sending
FIX messages, and submit various orders using FIX messages.

FIX is a financial industry protocol that facilitates low latency trading. For details about
the FIX protocol, see FIX Trading Community.

To access the example code, enter edit FixFlyerExample.m at the command line.

Connect to FIX Flyer

Import the FIX Flyer Java libraries.

import flyer.apps.*;
import flyer.apps.FlyerApplicationManagerFactory.*;
import flyer.core.session.*;

Create the FIX Flyer Engine connection c using these arguments:

• User name username
• Password password
• IP address ipaddress
• Port number port
• Order information port number orderport

username = 'guest';
password = 'guest';
ipaddress = 'example.fixcomputeserver.com';
port = 12001;
orderport = 13001;

c = fixflyer(username,password,ipaddress,port,orderport);

Add Listener and Subscribe to FIX Sessions

Add the FIX Flyer event listener to the FIX Flyer Engine connection. Listen for and
display the FIX Flyer Engine event data in the Workspace browser by using the sample
event handling listener fixExampleListener.

1 Getting Started

1-20

https://www.fixtrading.org/

To access the code for the listener, enter edit fixExampleListener.m. Or, to process
the event data in another way, you can write a custom event handling listener function.
For details, see “Create Functions in Files” (MATLAB).

Process the FIX Flyer Engine events e using the sample event handling listener
fixExampleListener. Specify e as any letter. fixExampleListener returns a handle
to the listener lh.

lh = addListener(c,@(~,e)fixExampleListener(e,c));

Subscribe to FIX sessions and set up the FIX Flyer Application Manager. Register with the
FIX Flyer session. Connect the FIX Flyer Application Manager to the FIX Flyer Engine
and start the internal receiving thread.
c.SessionID = flyer.core.session.SessionID('Alpha',...
 'Beta','FIX.4.4');
c.FlyerApplicationManager.setLoadDefaultDataDictionary(false);
c.FlyerApplicationManager.registerFIXSession(...
 flyer.apps.FixSessionSubscription(...
 c.SessionID,true,0));
c.FlyerApplicationManager.connect;
c.FlyerApplicationManager.start;

Create FIX Messages

Create two FIX messages using a structure array order. Each structure in the array
represents one FIX message. Both messages denote a sell side transaction for 1000 IBM
shares. The order type is a previously quoted order. The order handling instruction is a
private automated execution. The order transaction time is the current moment. The FIX
protocol version is 4.4.

Set the MsgType to 'D' to denote a new order.

order.BeginString{1,1} = 'FIX.4.4';
order.CLOrdId{1,1} = '338';
order.Side{1,1} = '2';
order.TransactTime{1,1} = datestr(now);
order.OrdType{1,1} = 'D';
order.Symbol{1,1} = 'IBM';
order.HandlInst{1,1} = '1';
order.MsgType{1,1} = 'D';
order.OrderQty{1,1} = '1000';
order.HeaderFields{1,1} = {'OnBehalfOfCompID','TRADER'};
order.BodyFields{1,1} = {'NoPartyIDs','3'; ...
 'PartyID','1'; ...
 'PartyRole','BBVA'; ...

 Create an Order Using FIX Flyer

1-21

 'PartyID','1'; ...
 'PartyRole','CVGX'; ...
 'PartyID','1'; ...
 'PartyRole','GSAM'};
order.BeginString{2,1} = 'FIX.4.4';
order.CLOrdId{2,1} = '339';
order.Side{2,1} = '2';
order.TransactTime{2,1} = datestr(now);
order.OrdType{2,1} = 'D';
order.Symbol{2,1} = 'IBM';
order.HandlInst{2,1} = '1';
order.MsgType{2,1} = 'D';
order.OrderQty{2,1} = '1000';
order.HeaderFields{2,1} = {'OnBehalfOfCompID','TRADER'};
order.BodyFields{2,1} = {'NoPartyIDs','3'; ...
 'PartyID','1'; ...
 'PartyRole','BBVA'; ...
 'PartyID','1'; ...
 'PartyRole','CVGX'; ...
 'PartyID','1'; ...
 'PartyRole','GSAM'};

Send FIX Messages

Use the FIX Flyer Engine connection to send the FIX messages. status contains a logical
zero for a successful message delivery.

status = sendMessage(c,order);

Return Order Information

Return and display the order information o for all orders. The Variables editor displays
the contents of o.

o = orderInfo(c);
openvar('o')

Replace an order. Create a FIX message replace with an updated quantity of 3378
shares. Set the field MsgType to 'G' to specify a replace order.

replace.BeginString{1,1} = 'FIX.4.4';
replace.CLOrdId{1,1} = '338_REPLACE';
replace.origClOrdId{1,1} = '338';
replace.Symbol{1,1} = 'IBM';
replace.OnBehalfOfCompID{1,1} = 'TRADER';

1 Getting Started

1-22

replace.OrdType{1,1} = 'D';
replace.OrderQty{1,1} = '3378';
replace.MsgType{1,1} = 'G';
replace.Text{1,1} = 'REST API REPLACE';

Send the FIX message. To see the replaced order, retrieve and display the order
information. The Variables editor displays the contents of o.

status = sendMessage(c,replace);

o = orderInfo(c);
openvar('o')

Now, cancel the order. Create a FIX message cancel with order number 338. Set the
field MsgType to 'F' to specify a cancel order.

cancel.BeginString{1,1} = 'FIX.4.4';
cancel.CLOrdId{1,1} = '338_CANCEL';
cancel.origClOrdId{1,1} = '338_REPLACE';
cancel.Symbol{1,1} = 'IBM';
cancel.OnBehalfOfCompID{1,1} = 'TRADER';
cancel.OrdType{1,1} = 'D';
cancel.MsgType{1,1} = 'F';
cancel.Text{1,1} = 'REST API CANCEL';

Send the FIX message. Then retrieve and display the canceled order information. The
Variables editor displays the contents of o.

status = sendMessage(c,cancel);

o = orderInfo(c);
openvar('o')

Receive FIX Message

Use the sample event handling listener fixExampleListener to listen for FIX messages
from the FIX Flyer Engine. The listener fixExampleListener returns the raw FIX
message in the table fixResponse. Display the first three columns of the table. The
column names of fixResponse contain FIX tag names from the returned raw FIX
message. The data in the columns contain the values of the returned raw FIX message.

fixResponse(:,1:3)

ans =

 Create an Order Using FIX Flyer

1-23

 BeginString BodyLength MsgType
 ___________ __________ _______

 'FIX.4.4' '219' '8'

Close FIX Flyer Connection

close(c)

See Also
addListener | close | fixflyer | orderInfo | sendMessage

External Websites
• FIX Trading Community

1 Getting Started

1-24

https://www.fixtrading.org/

Writing and Running Custom Event Handler Functions
with Bloomberg EMSX

In this section...
“Write a Custom Event Handler Function” on page 1-25
“Run a Custom Event Handler Function” on page 1-25
“Workflow for Custom Event Handler Function” on page 1-26

Write a Custom Event Handler Function
You can process events related to any Bloomberg EMSX orders and routes by writing a
custom event handler function to use with Trading Toolbox. For example, you can plot the
changes in the number of shares routed. Follow these tasks to write a custom event
handler.

1 Choose the events that you want to process, monitor, or evaluate.
2 Decide how the custom event handler function processes these events.
3 Determine the input and output arguments for the custom event handler function.
4 Write the code for the custom event handler function.

For details, see “Create Functions in Files” (MATLAB). For a code example of an event
handler function, enter edit emsxOrderBlotter.m at the command line. Then, see the
function processEventToBlotter in this file.

Run a Custom Event Handler Function
You can run the custom event handler function by using timer. Specify the custom event
handler function name as a function handle and pass this function handle as an input
argument to timer. For details about function handles, see “Create Function Handle”
(MATLAB). For example, suppose you want to create an order using
createOrderAndRoute with the custom event handler function named eventhandler.
This code assumes a Bloomberg EMSX connection c, Bloomberg EMSX order order, and
timer object t.

1 Run timer to execute eventhandler. The name-value pair argument TimerFcn
specifies the event handler function. The name-value pair argument Period specifies

 Writing and Running Custom Event Handler Functions with Bloomberg EMSX

1-25

a 1-second delay between executions of the event handler function. When the name-
value pair argument ExecutionMode is set to fixedRate, the event handler
function executes immediately after it is added to the MATLAB execution queue.

t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate');

2 Start the timer to initiate and execute eventhandler immediately.

start(t)
3 Run createOrderAndRoute using the custom event handler by setting

useDefaultEventHandler to false.

createOrderAndRoute(c,order,'useDefaultEventHandler',false)
4 Stop the timer to stop data updates.

stop(t)

If you want to resume data updates, run start.
5 Delete the timer once you are done with processing data updates for the Bloomberg

EMSX connection.

delete(t)

Workflow for Custom Event Handler Function
This workflow summarizes the tasks to work with a custom event handler function using
Bloomberg EMSX.

1 Write a custom event handler function and save it to a file.
2 Create a connection using emsx.
3 Subscribe to Bloomberg EMSX fields using orders and routes. You can also write

custom event handler functions to process subscription events.
4 Run the custom event handler function using timer. Use a function handle to specify

the custom event handler function name to run timer.
5 Start the timer to execute the custom event handler function immediately using

start.
6 Stop data updates using stop.
7 Unsubscribe from Bloomberg EMSX fields by using the API syntax.

1 Getting Started

1-26

8 Delete the timer using delete.
9 Close the connection using close.

See Also
close | createOrderAndRoute | delete | emsx | orders | routes | start | stop |
timer

Related Examples
• “Create Functions in Files” (MATLAB)

More About
• “Create Function Handle” (MATLAB)

External Websites
• EMSX API Programmers Guide

 See Also

1-27

https://emsx-api-doc.readthedocs.io/en/latest/index.html

Writing and Running Custom Event Handler Functions
with Interactive Brokers

In this section...
“Write a Custom Event Handler Function” on page 1-28
“Run a Custom Event Handler Function” on page 1-28
“Workflow for Custom Event Handler Function” on page 1-29

Write a Custom Event Handler Function
You can process events related to any Interactive Brokers data updates by writing a
custom event handler function to use with Trading Toolbox. For example, you can request
data about all open orders or retrieve account information. Follow these tasks to write a
custom event handler.

1 Choose the events that you want to process, monitor, or evaluate.
2 Decide how the custom event handler function processes these events.
3 Determine the input and output arguments for the custom event handler function.
4 Write the code for the custom event handler function.

For details, see “Create Functions in Files” (MATLAB). For a code example of an
Interactive Brokers event handler function, see ibExampleEventHandler.m.

Run a Custom Event Handler Function
You can run the custom event handler function by passing the function name as an input
argument into an existing function. Specify the custom event handler function name as a
character vector, string, or function handle. For details about function handles, see
“Create Function Handle” (MATLAB).

For example, suppose you want to retrieve real-time data from Interactive Brokers using
realtime with the custom event handler function named eventhandler. You can use
either of these syntaxes to run eventhandler. This code assumes a IB Trader
Workstation connection ib, IB Trader Workstation IContract object ibContract, and
Interactive Brokers fields f.

Use a character vector or string.

1 Getting Started

1-28

tickerid = realtime(ib,ibContract,f,'eventhandler');

Or, use a function handle.

tickerid = realtime(ib,ibContract,f,@eventhandler);

Workflow for Custom Event Handler Function
This workflow summarizes the tasks to work with a custom event handler function using
Interactive Brokers.

1 Write a custom event handler function and save it to a file.
2 Create a connection to the IB Trader Workstation using ibtws.
3 Run an existing function to receive data updates. Use the custom event handler

function as an input argument.

Caution: To run default event handler and sample event handler functions, you must
run one event handler function at a time. After you run one event handler, close the
IB Trader Workstation connection. Then, create another connection to run a different
event handler with the same existing function. Otherwise, MATLAB assigns multiple
existing functions to events and errors occur.

4 Close the connection to the IB Trader Workstation using close.

See Also
close | ibtws | realtime

More About
• “Create Functions in Files” (MATLAB)
• “Create Function Handle” (MATLAB)

 See Also

1-29

Workflow Models

• “Workflow for Bloomberg EMSX” on page 2-2
• “Workflows for Trading Technologies X_TRADER” on page 2-4
• “Workflow for Interactive Brokers” on page 2-6
• “Workflow for CQG” on page 2-9

2

Workflow for Bloomberg EMSX
The workflow for Bloomberg EMSX is versatile with many options for alternate flows to
create, route, and manage the status of an open order until it is filled.

1 Connect to Bloomberg EMSX using emsx.
2 Set up a subscription for orders and routes to obtain events on subsequent requests

using orders and routes.
3 Create a Bloomberg EMSX order. Options in the flow of creating an order are:

• Create an order using createOrder.
• Route an order using routeOrder.
• Route an order with a strategy using routeOrderWithStrat.
• Route multiple orders with a strategy using groupRouteOrderWithStrat.
• Create an order and route using createOrderAndRoute.
• Create an order and route with a strategy using

createOrderAndRouteWithStrat.
4 Modify an order or route using these functions:

• Modify an order using modifyOrder.
• Modify a route using modifyRoute.
• Modify a route with a strategy using modifyRouteWithStrat.

5 Delete an order or route using these functions:

• Delete an order using deleteOrder.
• Delete a route using deleteRoute.

6 Obtain information from Bloomberg EMSX using these functions:

• Obtain broker information using getBrokerInfo.
• Obtain Bloomberg EMSX field information using getAllFieldMetaData.

7 Explore information about existing orders and routes using these functions:

• View order transactions with a sample order blotter using emsxOrderBlotter.
• Process the current contents of the event queue using processEvent.

8 Close the Bloomberg EMSX connection using close.

2 Workflow Models

2-2

See Also

Related Examples
• “Create an Order Using Bloomberg EMSX” on page 1-14
• “Create and Manage a Bloomberg EMSX Order” on page 4-12
• “Create and Manage a Bloomberg EMSX Route” on page 4-17
• “Manage a Bloomberg EMSX Order and Route” on page 4-22

External Websites
• EMSX API Programmers Guide

 See Also

2-3

https://emsx-api-doc.readthedocs.io/en/latest/index.html

Workflows for Trading Technologies X_TRADER
You can use X_TRADER to monitor market price information and submit orders.

To monitor market price information:

1 Connect to Trading Technologies X_TRADER using xtrdr.
2 Create an event notifier using createNotifier.
3 Create an instrument and attach it to the notifier using createInstrument.

Optionally, use getData to return information on the instrument that you have
created.

4 Close the Trading Technologies X_TRADER connection using close.

To submit orders to X_TRADER:

1 Connect to Trading Technologies X_TRADER using xtrdr.
2 Create an event notifier using createNotifier.
3 Create an instrument and attach it to the notifier using createInstrument.

Optionally, use getData to return information on the instrument that you have
created.

4 Create an order set using createOrderSet to define the level of the order status
events and event handlers for orders that will be submitted to X_TRADER.

5 Define the order using createOrderProfile. An order profile contains the settings
that define an individual order to be submitted.

6 Route the order for execution using the OrderSet object created by
createOrderSet in step 4.

7 Close the Trading Technologies X_TRADER connection using close.

To monitor market price information and respond to market changes by automatically
submitting orders to X_TRADER:

1 Connect to Trading Technologies X_TRADER using xtrdr.
2 Create an event notifier using createNotifier.
3 Create an instrument and attach it to the notifier using createInstrument. Use

getData to return information on the instrument that you have created.
4 Define events by assigning callbacks for validating or invalidating an instrument and

performing calculations based on the event. Based on some predefined condition

2 Workflow Models

2-4

reached when changes in the incoming data satisfy the condition, event callbacks
execute the functions in steps 5, 6, and 7.

5 Create an order set using createOrderSet to define the level of the order status
events and event handlers for orders that will be submitted to X_TRADER.

6 Define the order using createOrderProfile. An order profile contains the settings
that define an individual order to be submitted.

7 Route the order for execution using the OrderSet object created by
createOrderSet in step 5.

8 Close the Trading Technologies X_TRADER connection using close.

See Also

Related Examples
• “Create an Order Using X_TRADER” on page 1-17
• “Listen for X_TRADER Price Updates” on page 4-2
• “Listen for X_TRADER Price Market Depth Updates” on page 4-4
• “Submit X_TRADER Orders” on page 4-8

 See Also

2-5

Workflow for Interactive Brokers
In this section...
“Request Interactive Brokers Market Data” on page 2-6
“Create Interactive Brokers Orders” on page 2-7
“Request Interactive Brokers Informational Data” on page 2-7

This diagram shows the functions that you can use with the IB Trader Workstation to
monitor market price information and submit orders.

Request Interactive Brokers Market Data
To request current, intraday, real-time, historical, or market depth data:

1 Connect to the IB Trader Workstation using ibtws.
2 Create the IB Trader Workstation IContract object.
3 Request current data for a security using getdata.
4 Request intraday data for a security using timeseries.
5 Request real-time data for a security using realtime.
6 Request historical data for a security using history.
7 Request market depth data for a security using marketdepth.

2 Workflow Models

2-6

8 Close the IB Trader Workstation connection using close.

Create Interactive Brokers Orders
To submit orders to the IB Trader Workstation:

1 Connect to the IB Trader Workstation using ibtws.
2 Create the IB Trader Workstation IContract object.
3 Create the IB Trader Workstation IOrder object.
4 Request a unique order identifier using orderid.
5 Create and submit the order using createOrder.
6 Request open order data using orders.
7 Request executed order data using executions.
8 Close the IB Trader Workstation connection using close.

Request Interactive Brokers Informational Data
To request information from the IB Trader Workstation:

1 Connect to the IB Trader Workstation using ibtws.
2 Create the IB Trader Workstation IContract object.
3 Request contract detailed data using contractdetails.
4 Request account information using accounts.
5 Request portfolio data using portfolio.
6 Close the IB Trader Workstation connection using close.

See Also

Related Examples
• “Create an Order Using IB Trader Workstation” on page 1-8
• “Create Interactive Brokers Combination Order” on page 4-40
• “Create and Manage an Interactive Brokers Order” on page 4-27

 See Also

2-7

• “Request Interactive Brokers Historical Data” on page 4-33
• “Request Interactive Brokers Real-Time Data” on page 4-36

2 Workflow Models

2-8

Workflow for CQG
This diagram shows the functions you can use with CQG to monitor market price
information and submit orders.

To request current, intraday, or historical data:

1 Create the CQG connection object using cqg.
2 Define the CQG event handlers.
3 Connect to CQG using startUp.
4 Subscribe to a CQG instrument to request real-time data using realtime.
5 Request intraday data for a security using timeseries.
6 Request historical data for a security using history.
7 Close the CQG connection using close or shutDown.

To submit orders to CQG:

1 Create the CQG connection object using cqg.
2 Define the CQG event handlers.
3 Connect to CQG using startUp.
4 Create the CQG account credentials object.

 Workflow for CQG

2-9

5 Subscribe to a CQG instrument to request real-time data using realtime.
6 Create and submit the order using createOrder.
7 Close the CQG connection using close or shutDown.

See Also

Related Examples
• “Create an Order Using CQG” on page 1-12
• “Create CQG Orders” on page 4-46
• “Request CQG Historical Data” on page 4-52
• “Request CQG Intraday Tick Data” on page 4-55
• “Request CQG Real-Time Data” on page 4-59

2 Workflow Models

2-10

Transaction Cost Analysis

• “Analyze Trading Execution Results” on page 3-2
• “Post-Trade Analysis Metrics Definitions” on page 3-6
• “Kissell Research Group Data Sets” on page 3-9
• “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23
• “Estimate Portfolio Liquidation Costs” on page 3-27
• “Optimize Percentage of Volume Trading Strategy” on page 3-32
• “Optimize Trade Time Trading Strategy” on page 3-36
• “Optimize Trade Schedule Trading Strategy” on page 3-40
• “Estimate Trading Costs for Collection of Stocks” on page 3-45
• “Conduct Back Test on Portfolio” on page 3-47
• “Conduct Stress Test on Portfolio” on page 3-50
• “Liquidate Dollar Value from Portfolio” on page 3-56
• “Optimize Long Portfolio” on page 3-62
• “Determine Buy-Sell Imbalance Using Cost Index” on page 3-66
• “Rank Broker Performance” on page 3-72
• “Optimize Trade Schedule Trading Strategy for Basket” on page 3-79
• “Create Basket Summary and Efficient Trading Frontier” on page 3-84

3

Analyze Trading Execution Results
This example shows how to conduct post-trade analysis using transaction cost analysis
from the Kissell Research Group. Post-trade analysis includes implementation shortfall,
alpha capture, benchmark costs, broker value add, and Z-Score. For details about these
metrics, see “Post-Trade Analysis Metrics Definitions” on page 3-6. You can use post-
trade analysis to evaluate portfolio returns and profits. You can measure performance of
brokers and algorithms.

To access the example code, enter edit KRGPostTradeAnalysisExample.m at the
command line.

Retrieve Market-Impact Parameters and Load Transaction Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact
date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k.

k = krg(miData);

Load the example data PostTradeData from the file KRGExampleData.mat, which is
included with the Trading Toolbox.

load KRGExampleData.mat PostTradeData

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Determine Implementation Shortfall Costs

Determine the components of the implementation shortfall costs in basis points. The
components are:

3 Transaction Cost Analysis

3-2

• Fixed cost ISFixed
• Delay cost ISDelayCost
• Execution cost ISExecutionCost
• Opportunity cost ISOpportunityCost

For details about the cost components, see “Post-Trade Analysis Metrics Definitions” on
page 3-6.

PostTradeData.ISDollars = ...
 PostTradeData.OrderShares .* PostTradeData.ISDecisionPrice;
PostTradeData.ISFixed = ...
 PostTradeData.ISFixedDollars ./ PostTradeData.ISDollars*10000;
PostTradeData.ISDelayCost = ...
 PostTradeData.OrderShares .* ...
 (PostTradeData.ISArrivalPrice-PostTradeData.ISDecisionPrice).* ...
 PostTradeData.SideIndicator ./ PostTradeData.ISDollars*1000;
PostTradeData.ISExecutionCost = ...
 PostTradeData.TradedShares .* ...
 (PostTradeData.AvgExecPrice-PostTradeData.ISArrivalPrice).* ...
 PostTradeData.SideIndicator ./ PostTradeData.ISDollars*1000;
PostTradeData.ISOpportunityCost = ...
 (PostTradeData.OrderShares-PostTradeData.TradedShares).* ...
 (PostTradeData.ISEndPrice-PostTradeData.ISArrivalPrice).* ...
 PostTradeData.SideIndicator ./ PostTradeData.ISDollars*1000;

Determine the total implementation shortfall cost ISCost.

PostTradeData.ISCost = PostTradeData.ISFixed + ...
 PostTradeData.ISDelayCost + PostTradeData.ISExecutionCost + ...
 PostTradeData.ISOpportunityCost;

Determine Profit

Determine the alpha capture Alpha_CapturePct. Divide realized profit
Alpha_Realized by potential profit Alpha_TotalPeriod.

PostTradeData.Alpha_Realized = ...
 (PostTradeData.ISEndPrice-PostTradeData.AvgExecPrice).* ...
 PostTradeData.TradedShares .* PostTradeData.SideIndicator ./ ...
 (PostTradeData.TradedShares .* PostTradeData.ISArrivalPrice)*10000;
PostTradeData.Alpha_TotalPeriod = ...
 (PostTradeData.ISEndPrice-PostTradeData.ISArrivalPrice).* ...
 PostTradeData.TradedShares .* PostTradeData.SideIndicator ./ ...

 Analyze Trading Execution Results

3-3

 (PostTradeData.TradedShares .* PostTradeData.ISArrivalPrice)*10000;
lenAlpha_Realized = length(PostTradeData.Alpha_Realized);
PostTradeData.Alpha_CapturePct = zeros(lenAlpha_Realized,1);
for ii = 1:lenAlpha_Realized
 if PostTradeData.Alpha_TotalPeriod(ii) > 0
 PostTradeData.Alpha_CapturePct(ii) = ...
 PostTradeData.Alpha_Realized(ii) ./ ...
 PostTradeData.Alpha_TotalPeriod(ii);
 else
 PostTradeData.Alpha_CapturePct(ii) = ...
 -(PostTradeData.Alpha_Realized(ii) - ...
 PostTradeData.Alpha_TotalPeriod(ii)) ./ ...
 PostTradeData.Alpha_TotalPeriod(ii);
 end
end

Determine Benchmark and Trading Costs

Determine benchmark costs in basis points. Here, the benchmark prices are:

• Close price of the previous day PrevClose_Cost
• Open price Open_Cost
• Close price Close_Cost
• Arrival cost Arrival_Cost
• Period VWAP PeriodVWAP_Cost
PostTradeData.PrevClose_Cost = ...
 (PostTradeData.AvgExecPrice-PostTradeData.PrevClose).* ...
 PostTradeData.SideIndicator ./ PostTradeData.PrevClose*10000;
PostTradeData.Open_Cost = ...
 (PostTradeData.AvgExecPrice-PostTradeData.Open).* ...
 PostTradeData.SideIndicator ./ PostTradeData.Open*10000;
PostTradeData.Close_Cost = (PostTradeData.AvgExecPrice-PostTradeData.Close).* ...
 PostTradeData.SideIndicator ./ PostTradeData.Close*10000;
PostTradeData.Arrival_Cost = (PostTradeData.AvgExecPrice- ...
 PostTradeData.ArrivalPrice).* ...
 PostTradeData.SideIndicator ./ PostTradeData.ArrivalPrice*10000;
PostTradeData.PeriodVWAP_Cost = (PostTradeData.AvgExecPrice- ...
 PostTradeData.PeriodVWAP).* ...
 PostTradeData.SideIndicator ./ PostTradeData.PeriodVWAP*10000;

Estimate market-impact miCost and timing risk tr costs.

PostTradeData.Size = PostTradeData.TradedShares ./ PostTradeData.ADV;
PostTradeData.Price = PostTradeData.ArrivalPrice;
PostTradeData.miCost = marketImpact(k,PostTradeData);
PostTradeData.tr = timingRisk(k,PostTradeData);

3 Transaction Cost Analysis

3-4

Determine Broker Value Add and Z-Score

Determine the broker value add using the arrival cost and market impact.
PostTradeData.ValueAdd = (PostTradeData.Arrival_Cost-PostTradeData.miCost) * -1;

Determine the Z-Score using the broker value add and timing risk.

PostTradeData.zScore = PostTradeData.ValueAdd./PostTradeData.tr;

For details about the preceding calculations, contact the Kissell Research Group.

See Also
krg | marketImpact | timingRisk

More About
• “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23
• “Post-Trade Analysis Metrics Definitions” on page 3-6
• “Kissell Research Group Data Sets” on page 3-9

 See Also

3-5

Post-Trade Analysis Metrics Definitions

In this section...
“Implementation Shortfall” on page 3-6
“Alpha Capture” on page 3-7
“Benchmark Costs” on page 3-7
“Broker Value Add” on page 3-7
“Z-Score” on page 3-7

After executing a transaction, Kissell Research Group provides various metrics for
analyzing the results of a transaction. For an example using these metrics, see “Analyze
Trading Execution Results” on page 3-2.

For details about these calculations, contact the Kissell Research Group.

Implementation Shortfall
Implementation shortfall (IS) determines the total cost of implementing an investment
decision. IS subtracts the actual return from the paper return of a stock or portfolio after
including all visible costs including commissions, fees, and taxes. The Kissell Research
Group IS cost formula decomposes costs into fixed, delay, execution, and opportunity cost
components.

IS Component Description
Fixed cost Cost component that is not dependent upon

the implementation strategy.
Delay cost Cost component that represents the loss in

investment value between the time the
managers make the investment decision
and the order releases to the market.

Execution cost Cost component that is the difference
between the execution price and the stock
price at the time the order releases to the
market.

3 Transaction Cost Analysis

3-6

IS Component Description
Opportunity cost Cost component that represents the

foregone profit or loss resulting from not
being able to execute the order to
completion within the allotted time period.

Portfolio managers and traders use IS to understand the trading cost environment.

Alpha Capture
Alpha capture, or profit, is the realized profit divided by the potential profit. Realized
profit is based on the difference between end price and average execution price. Potential
profit is based on the difference between end price and arrival price. Portfolio managers
and traders use alpha capture to measure portfolio performance.

Benchmark Costs
The benchmark cost compares the average execution price to a specific benchmark price.
A benchmark price can be any price such as the close price. Traders use benchmark costs
to measure strategy and transaction performance.

Broker Value Add
The broker value add metric is a measure of the overall broker performance. A positive
value indicates that the broker performed better than expected and a negative value
indicates the broker under-performed expectations. This metric is the difference between
the estimated trading cost and the actual cost incurred by the investor. You can estimate
trading costs using marketImpact, priceAppreciation, and timingRisk. This metric
reflects performance given all market conditions on the day and buying and selling
behavior from all other participants.

Traders use this metric to measure broker performance.

Z-Score
Z-Score is the broker value add metric divided by timing risk. You can estimate timing
risk using timingRisk. The Z-Score specifies the number of standard deviations away
from the estimated cost. If the Z-Score is greater than or equal to two standard
deviations, then the actual cost varies greatly from the estimated cost.

 Post-Trade Analysis Metrics Definitions

3-7

Traders use this metric to measure broker performance.

References
[1] Kissell, Robert. “The Expanded Implementation Shortfall: Understanding Transaction

Cost Components.” Journal of Trading. Vol. 1, Number 3, Summer 2006, pp. 6–16.

See Also

Related Examples
• “Analyze Trading Execution Results” on page 3-2

3 Transaction Cost Analysis

3-8

Kissell Research Group Data Sets
The following descriptions define the data sets provided in the file
KRGExampleData.mat.

Basket Variables
The table Basket contains a trade list for a collection of stocks in a portfolio. For
examples of using this data set, see “Rank Broker Performance” on page 3-72.

Real trade lists come from portfolio managers.

Table Variable Description
Symbols Stock symbol.
Side Side ('B' or 'S').
Size Size (number of shares divided by average

daily volume).
Shares Number of shares.
Price Stock price.
ADV Average daily volume.
Volatility A statistical measure of the dispersion of

daily returns for a given security. Volatility
is the standard deviation of daily log price
returns over time. Kissell Research Group
uses a 30-day historical period. Annualize
volatility by multiplying by the square root
of 250.

POV Percentage of volume.

BrokerNames Variables
The table BrokerNames contains the broker names and their associated market-impact
code. For examples of using this data set, see “Rank Broker Performance” on page 3-72.

Real trade lists come from portfolio managers.

 Kissell Research Group Data Sets

3-9

Table Variable Description
Broker Broker name.
MICode Market-impact code (1, 2, 3, and so on).

TradeData Variables
The table TradeData provides example data for a collection of stocks in a transaction.
For examples of using this data set, see “Conduct Sensitivity Analysis to Estimate Trading
Costs” on page 3-23 and “Estimate Portfolio Liquidation Costs” on page 3-27.

Real market data comes from a data source such as Bloomberg.

Table Variable Description
Symbol Stock symbol.
Side Side ('Buy' or 'Sell').
SideIndicator Side indicator. 1 is a buy (add shares to

portfolio). -1 is a sell (remove shares from
portfolio).

AvgExecPrice Average execution price.
ArrivalPrice Arrival price. The price at the time the

order enters the market.
PeriodVWAP Volume weighted average price (VWAP).

The VWAP compares the execution price to
the interval VWAP price.

CCYRate Currency rate.
Volatility A statistical measure of the dispersion of

daily returns for a given security. Volatility
is the standard deviation of daily log price
returns over time. Kissell Research Group
uses a 30-day historical period. Annualize
volatility by multiplying by the square root
of 250.

POV Percentage of volume.

3 Transaction Cost Analysis

3-10

Table Variable Description
SectorCategory Market sector category ('Energy',

'Industrials', 'Materials', and so
on).

OrderSizeCategory Order size category ('Large', 'Medium',
or 'Small').

VolatilityCategory Volatility category ('High', 'Medium', or
'Low').

POVRateCategory Percentage of volume rate category
('Aggressive', 'Passive', or
'Normal').

MktCapCategory Market capitalization category ('LC' is
large cap, 'MC' is mid cap, 'SM' is small
cap).

MomentumCategory Momentum category ('Favorable',
'Neutral', or 'Adverse').

MktMovementCategory Market movement category ('Favorable',
'Neutral', or 'Adverse').

ADV Average daily volume.
Price Stock price.
Size Size (number of shares divided by average

daily volume).
Alpha_bp Alpha estimate per day in basis points.
Shares Number of shares.
Broker Broker name.

TradeDataCurrent and TradeDataHistorical Variables
The tables TradeDataCurrent and TradeDataHistorical provide example current
and historical data, respectively, for a collection of stocks in a transaction. For an example
of using this data set, see “Determine Buy-Sell Imbalance Using Cost Index” on page 3-
66.

Real market data comes from a data source such as Bloomberg.

 Kissell Research Group Data Sets

3-11

Table Variable Description
Symbol Stock symbol.
Date Transaction date.
MICode Market-impact code (1, 2, 3, and so on).
Open Stock open price.
VWAP Volume weighted average price (VWAP).
Last Stock last price.
Volume Trade volume.
Volatility A statistical measure of the dispersion of

daily returns for a given security. Volatility
is the standard deviation of daily log price
returns over time. Kissell Research Group
uses a 30-day historical period. Annualize
volatility by multiplying by the square root
of 250.

ADV Average daily volume.
Beta Beta.
IndexOpen Index open price.
IndexVWAP Index VWAP.
IndexLast Index last price.
Price Stock price.
POV Percentage of volume.
Shares Number of shares.

PortfolioData Variables
The table PortfolioData provides example data for a collection of stocks in a portfolio.
To use this data set, see portfolioCostCurves.

Real portfolio data comes from a portfolio belonging to a company or portfolio manager.

Table Variable Description
Symbol Stock symbol.

3 Transaction Cost Analysis

3-12

Table Variable Description
Price_Local Local price of the stock.
Price_Currency Stock price with a specified base currency

if the stock trades outside the United
States. If the stock trades in the United
States, Price_Currency has the same
value as Price_Local.

ADV Average daily volume.
Volatility Volatility.
Shares Number of shares.

PostTradeData Variables
The table PostTradeData provides example data for a collection of stocks in an
executed transaction. To use this data set, see “Analyze Trading Execution Results” on
page 3-2.

Real market data comes from a data source such as Bloomberg.

Table Variable Description
Symbol Stock symbol.
Side Side ('Buy' or 'Sell').
SideIndicator Side indicator. 1 is a buy (add shares to

portfolio). -1 is a sell (remove shares from
portfolio).

Date Transaction date.

 Kissell Research Group Data Sets

3-13

Table Variable Description
DecisionTime Decision time. The portfolio manager

decides to buy, sell, short, or cover a
position at this time. If no other timestamp
is available, set this variable to the time
when the portfolio manager enters the
order into the trading system. If the
portfolio manager does not have a
timestamp for this decision, investors use
the close time of the previous day, open
time, or arrival time.

ArrivalTime Arrival time. The trading system enters the
order into the market for execution at this
time. You can obtain it from the first trade
from the electronic audit trail.

EndTime End time. The portfolio manager specifies
to complete the order at this time. Typically,
this time is the end of the day or the time of
the last trade.

AvgExecPrice Average executed price.
OrderShares Number of shares.
TradedShares Number of shares executed.
Volatility Volatility.
ADV Average daily volume.
POV Percentage of volume.
CCYRate Currency rate.
MICategory Market-impact category (for example, 1).
PrevClose Close price of the previous day.
Open Open price.
Close Close price.
ArrivalPrice Arrival price. The price at the time the

order enters the market.

3 Transaction Cost Analysis

3-14

Table Variable Description
PeriodVWAP Volume weighted average price (VWAP).

The VWAP compares the execution price to
the interval VWAP price.

Broker Broker name.
Algorithm Trading algorithm ('Dark Pool', 'TWAP',

'Arrival', and so on).
Manager Portfolio manager name.
Trader Trader name.
SectorCategory Market sector category ('Energy',

'Industrials', 'Materials', and so
on).

OrderSizeCategory Order size category ('Large', 'Medium',
or 'Small').

VolatilityCategory Volatility category ('High', 'Medium', or
'Low').

POVRateCategory Percentage of volume rate category
('Aggressive', 'Passive', or
'Normal').

MktCapCategory Market capitalization category ('LC' is
large cap, 'MC' is mid cap, 'SM' is small
cap).

StockMomentumCategory Stock momentum category ('Favorable',
'Neutral', or 'Adverse').

MktMovementCategory Market movement category ('Favorable',
'Neutral', or 'Adverse').

 Kissell Research Group Data Sets

3-15

Table Variable Description
StepOut Investor field designation. This variable is

optional for grouping and summary
analysis. This field refers to a process
where a broker (broker 1) receives an order
from a client. Then this broker gives that
order to another broker (broker 2) for its
execution. Broker 1 receives credit for the
trade but its performance applies to broker
2 who executed the trade.

ISDecisionPrice Decision price. This variable is the stock
price when the portfolio manager decides
to buy, sell, short, or cover a position.

ISArrivalPrice Midpoint of the bid-ask spread at the time
an order enters the market.

ISEndPrice End price. This variable is the stock price at
the specified end time of the order.

ISFixedDollars Fixed fees in dollars that include the
commission, taxes, clearing and settlement
charges, and so on.

TradeDataBackTest Variables
The table TradeDataBackTest provides example data for a set of stocks and a series of
dates. The data contains historical trade information for each stock. To use this data set,
see “Conduct Back Test on Portfolio” on page 3-47.

Real market data comes from a data source such as Bloomberg.

Table Variable Description
Symbol Stock symbol.
Date Historical transaction date.
Shares Number of shares.
Side Side ('Buy' or 'Sell').
Value Dollar value of the stock in the portfolio.

3 Transaction Cost Analysis

3-16

Table Variable Description
Price Stock price.
Size Size (number of shares divided by average

daily volume).
EstReturn Estimated return decimal value for the

stock in the portfolio.
Volatility A statistical measure of the dispersion of

daily returns for a given security. Volatility
is the standard deviation of daily log price
returns over time. Kissell Research Group
uses a 30-day historical period. Annualize
volatility by multiplying by the square root
of 250.

ADV Average daily volume.
MktCap Market capitalization.
TradeTime Trade duration time.
POVRate Percentage of volume rate.
MICode Market-impact code (1, 2, 3, and so on).
FXRate Foreign exchange rate.
POV Percentage of volume.

TradeDataStressTest Variables
The table TradeDataStressTest provides example data for a set of stocks for a date
range. The data contains trade information for each stock. To use this data set, see
“Conduct Stress Test on Portfolio” on page 3-50.

Real market data comes from a data source such as Bloomberg.

Table Variable Description
Symbol Stock symbol.
Date Historical transaction date.
Shares Number of shares.

 Kissell Research Group Data Sets

3-17

Table Variable Description
Side Side ('Buy' or 'Sell').
Value Dollar value of the stock in the portfolio.
Price Stock price.
Size Size (number of shares divided by average

daily volume).
EstReturn Estimated return decimal value for the

stock in the portfolio.
Volatility A statistical measure of the dispersion of

daily returns for a given security. Volatility
is the standard deviation of daily log price
returns over time. Kissell Research Group
uses a 30-day historical period. Annualize
volatility by multiplying by the square root
of 250.

ADV Average daily volume.
MktCap Market capitalization.
TradeTime Trade duration time.
POVRate Percentage of volume rate.
MICode Market-impact code (1, 2, 3, and so on).
FXRate Foreign exchange rate.

TradeDataPortOpt Variables
The table TradeDataPortOpt contains example data for a collection of stocks in a
portfolio. This data contains lower and upper bounds for the constraints used in the
portfolio optimization. To use this data set, see “Liquidate Dollar Value from Portfolio” on
page 3-56.

To see the related covariance data for each stock in the portfolio, see the covariance data
table CovarianceData.

Real portfolio data comes from a portfolio belonging to a company or portfolio manager.

3 Transaction Cost Analysis

3-18

Table Variable Description
Symbol Stock symbol.
Date Transaction date.
Shares Number of shares.
Value Dollar value of the stock in the portfolio.
Price Stock price.
Size Size (number of shares divided by average

daily volume).
EstReturn Estimated return decimal value for the

stock in the portfolio.
Volatility A statistical measure of the dispersion of

daily returns for a given security. Volatility
is the standard deviation of daily log price
returns over time. Kissell Research Group
uses a 30-day historical period. Annualize
volatility by multiplying by the square root
of 250.

ADV Average daily volume.
MktCap Market capitalization.
TradeTime Trade time.
MICode Market-impact code (1, 2, 3, and so on).
LB_Wt Lower bound weight.
UB_Wt Upper bound weight.
LB_MinShares Lower bound for the minimum shares.
UB_MaxShares Upper bound for the maximum shares.
LB_MinPctADV Lower bound for the minimum percentage

of average daily volume.
UB_MaxPctADV Upper bound for the maximum percentage

of average daily volume.
LB_MinValue Lower bound for the minimum value.
UB_MaxValue Upper bound for the maximum value.

 Kissell Research Group Data Sets

3-19

Table Variable Description
UB_MaxMI Upper bound for the maximum market-

impact cost.

TradeDataTradeOpt Variables
The table TradeDataTradeOpt provides an example trade list for a collection of stocks
in a portfolio. For an example of using this data set, see “Optimize Trade Schedule
Trading Strategy for Basket” on page 3-79.

Real trade lists come from portfolio managers.

Table Variable Description
Date Transaction date.
Side Side ('B' or 'S').
Shares Number of shares.
Price Stock price.
ADV Average daily volume.
Volatility A statistical measure of the dispersion of

daily returns for a given security. Volatility
is the standard deviation of daily log price
returns over time. Kissell Research Group
uses a 30-day historical period. Annualize
volatility by multiplying by the square root
of 250.

PctADV Percentage of average daily volume.
Value Transaction value.
Weight Weight.
SideIndicator Side indicator. 1 is a buy (add shares to

portfolio). -1 is a sell (remove shares from
portfolio).

MIRegion Market-impact region.
Symbol Stock symbol.
Alpha_bp Alpha in basis points.

3 Transaction Cost Analysis

3-20

Table Variable Description
Beta Beta.
Sector Market sector, such as Energy.
MktCap Market capitalization.

CovarianceData Table
The table CovarianceData contains a covariance value for all stocks in the portfolio
data table TradeDataPortOpt. Each variable in the table is a different stock. To use this
data set in the portfolio optimization, see “Liquidate Dollar Value from Portfolio” on page
3-56.

CovarianceTradeOpt Table
The table CovarianceTradeOpt contains a covariance value for each stock in the
portfolio data table TradeDataTradeOpt. Each variable in the table is a different stock.
To use this data set in the trade schedule optimization, see “Optimize Trade Schedule
Trading Strategy for Basket” on page 3-79.

References
[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of

Trading. Vol. 3, Number 2, Summer 2008, pp. 29–37.

[2] Kissell, Robert. “The Expanded Implementation Shortfall: Understanding Transaction
Cost Components.” Journal of Trading. Vol. 1, Number 3, Summer 2006, pp. 6–16.

[3] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[4] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

 Kissell Research Group Data Sets

3-21

See Also

Related Examples
• “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23
• “Conduct Back Test on Portfolio” on page 3-47
• “Conduct Stress Test on Portfolio” on page 3-50
• “Estimate Portfolio Liquidation Costs” on page 3-27
• “Liquidate Dollar Value from Portfolio” on page 3-56
• “Analyze Trading Execution Results” on page 3-2

3 Transaction Cost Analysis

3-22

Conduct Sensitivity Analysis to Estimate Trading Costs
This example shows how to evaluate changes in trading costs due to liquidity, volatility,
and market sensitivity to order flow and trades. With transaction cost analysis from the
Kissell Research Group, you can simulate the trading cost environment for a collection of
stocks. Sensitivity analysis enables you to estimate future trading costs for different
market conditions to determine the appropriate portfolio contents that meet the needs of
the investors.

Here, evaluate changes in trading costs due to decreasing average daily volume by 50%
and doubling volatility. The example data uses the percentage of volume (POV) trade
strategy.

To access the example code, enter edit KRGSensitivityAnalysisExample.m at the
command line.

Retrieve Market-Impact Parameters and Load Transaction Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact
date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k.

k = krg(miData);

Load the example data from the file KRGExampleData.mat, which is included with the
Trading Toolbox.

load KRGExampleData.mat

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

 Conduct Sensitivity Analysis to Estimate Trading Costs

3-23

Estimate Initial Trading Costs

Estimate initial trading costs using the example data TradeData. The trading costs are:

• Instantaneous trading cost itc
• Market-impact cost mi
• Timing risk tr
• Price appreciation pa

Group all four trading costs into a numeric matrix initTCA.

itc = iStar(k,TradeData);
mi = marketImpact(k,TradeData);
tr = timingRisk(k,TradeData);
pa = priceAppreciation(k,TradeData);
initTCA = [itc mi tr pa];

Create Scenario

Set variables to create the scenario. Here, the scenario decreases average daily volume
by 50% and doubles volatility. The stock price, volume, estimated alpha, and trade
strategy remain unchanged from the example data. You can modify the values of these
variables to create different scenarios. The fields are:

• Average daily volume
• Volatility
• Stock price
• Volume
• Alpha estimate
• POV trade strategy
• Trade time trade strategy

adjADV = 0.5;
adjVolatility = 2.0;
adjPrice = 1.0;
adjVolume = 1.0;
adjAlpha = 1.0;
adjPOV = 1.0;
adjTradeTime = 1.0;

Adjust the example data based on the scenario variables.

3 Transaction Cost Analysis

3-24

TradeDataAdj = TradeData;
TradeDataAdj.Size = TradeData.Size .* (1./adjADV);
TradeDataAdj.ADV = TradeData.ADV .* adjADV;
TradeDataAdj.Volatility = TradeData.Volatility .* adjVolatility;
TradeDataAdj.Price = TradeData.Price .* adjPrice;
TradeDataAdj.Alpha_bp = TradeData.Alpha_bp .* adjAlpha;

TradeDataAdj contains the adjusted data. Size doubles because average daily volume
decreases by 50%.

Convert POV trade strategy to the trade time trade strategy.

[~,povFlag,timeFlag] = krg.krgDataFlags(TradeData);
if povFlag
 TradeDataAdj.POV = TradeData.POV.*adjPOV;
 TradeDataAdj.TradeTime = TradeDataAdj.Size .* ...
 ((1-TradeDataAdj.POV) ./ TradeDataAdj.POV) .* (1./adjVolume);
elseif timeFlag
 TradeDataAdj.TradeTime = tradedata.TradeTime .* adjTradeTime;
 TradeDataAdj.POV = TradeDataAdj.Size ./ ...
 (TradeDataAdj.Size + TradeDataAdj.TradeTime .* adjVolume);
end

Estimate Trading Costs for Scenario

Estimate the trading costs based on the adjusted data. The numeric matrix newTCA
contains the trading costs for the scenario.

itc = iStar(k,TradeDataAdj);
mi = marketImpact(k,TradeDataAdj);
tr = timingRisk(k,TradeDataAdj);
pa = priceAppreciation(k,TradeDataAdj);
newTCA = [itc mi tr pa];

Subtract the trading costs from the scenario from the initial trading costs.

rawWI = newTCA - initTCA;
wi = table(rawWI(:,1),rawWI(:,2),rawWI(:,3),rawWI(:,4), ...
 'VariableNames',{'ITC','MI','TR','PA'});

The table wi contains the full impact of this scenario on the trading costs.

Display trading costs for the first three rows in wi.

wi(1:3,:)

 Conduct Sensitivity Analysis to Estimate Trading Costs

3-25

ans =

 ITC MI TR PA
 ______ ______ ______ _____

 43.05 0.65 290.80 -9.49
 408.29 124.52 443.16 8.47
 80.92 13.79 114.97 0.93

The variables in wi are:

• Instantaneous trading cost
• Market-impact cost
• Timing risk
• Price appreciation

For details about the preceding calculations, contact the Kissell Research Group.

See Also
iStar | krg | marketImpact | priceAppreciation | timingRisk

More About
• “Analyze Trading Execution Results” on page 3-2
• “Kissell Research Group Data Sets” on page 3-9

3 Transaction Cost Analysis

3-26

Estimate Portfolio Liquidation Costs
This example shows how to determine the cost of liquidating individual stocks in a
portfolio using transaction cost analysis from the Kissell Research Group. Compare the
individual stocks in a portfolio using various metrics in a scatter plot.

The example data uses the percentage of volume trade strategy to calculate costs. You
can also use the trade time trade strategy to run the analysis by replacing the percentage
of volume data with trade time data.

To access the example code, enter edit KRGPortfolioLiquidityExample.m at the
command line.

Retrieve Market-Impact Parameters and Load Transaction Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact
date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k.

k = krg(miData);

Load the example data TradeData from the file KRGExampleData.mat, which is
included with the Trading Toolbox.

load KRGExampleData.mat TradeData

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Estimate Trading Costs

Estimate market-impact costs mi.

 Estimate Portfolio Liquidation Costs

3-27

TradeData.mi = marketImpact(k,TradeData);

Estimate the timing risk tr.

TradeData.tr = timingRisk(k,TradeData);

Estimate the liquidity factor lf.

TradeData.lf = liquidityFactor(k,TradeData);

For details about the preceding calculations, contact the Kissell Research Group.

Display Portfolio Plots

Create a scatter plot that shows the following:

• Size
• Volatility
• Market impact
• Timing risk
• Liquidity factor

figure
axOrder = subplot(2,3,1);
nSymbols = 1:length(TradeData.Size);
scatter(nSymbols,TradeData.Size*100,10,'filled')
grid on
box on
title(' Order Size (%ADV)')
axOrder.YAxis.TickLabelFormat = '%.1f%%';

axVolatility = subplot(2,3,2);
scatter(nSymbols,TradeData.Volatility*100,10,'filled')
grid on
box on
title('Volatility')
axVolatility.YAxis.TickLabelFormat = '%g%%';

axMI = subplot(2,3,4);
scatter(nSymbols,TradeData.mi,10,'filled')
grid on
box on
title('Market Impact (bp)')

3 Transaction Cost Analysis

3-28

axMI.YAxis.TickLabelFormat = '%.1f';

axTR = subplot(2,3,5);
scatter(nSymbols,TradeData.tr,10,'filled')
grid on
box on
title('Timing Risk (bp)')
axTR.YAxis.TickLabelFormat = '%.1f';

axLF = subplot(2,3,6);
scatter(nSymbols,TradeData.lf*100,10,'filled')
grid on
box on
title('Liquidity Factor')
axLF.YAxis.TickLabelFormat = '%.2f%%';

 Estimate Portfolio Liquidation Costs

3-29

3 Transaction Cost Analysis

3-30

This figure demonstrates a snapshot view into the trading and liquidation costs, volatility,
and size of the stocks in the portfolio. You can modify this scatter plot to include other
variables from TradeData.

See Also
krg | liquidityFactor | marketImpact | timingRisk

More About
• “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23
• “Kissell Research Group Data Sets” on page 3-9

 See Also

3-31

Optimize Percentage of Volume Trading Strategy
This example shows how to optimize the strategy for a single stock by minimizing trading
costs using transaction cost analysis from the Kissell Research Group. The optimization
minimizes trading costs associated with the percentage of volume trading strategy and a
specified risk aversion parameter Lambda. The trading cost minimization is expressed as

min MI + PA + Lambda ⋅ TR ,

where trading costs are market impact MI, price appreciation PA, and timing risk TR. For
details, see marketImpact, priceAppreciation, and timingRisk. This example finds
a local minimum for this expression. For details about searching for the global minimum,
see “Troubleshooting and Tips” (MATLAB).

Here, you can optimize the percentage of volume trade strategy. To optimize trade time
and trade schedule strategies, see “Optimize Trade Time Trading Strategy” on page 3-36
and “Optimize Trade Schedule Trading Strategy” on page 3-40.

To access the example code, enter edit KRGSingleStockOptimizationExample.m at
the command line.

Retrieve Market-Impact Parameters and Create Example Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact
date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k.

k = krg(miData);

3 Transaction Cost Analysis

3-32

Create Single Stock Data

The structure tradeData contains data for a single stock. Use a structure or table to
define this data. The fields are:

• Number of shares
• Average daily volume
• Volatility
• Stock price
• Initial percentage of volume trade strategy
• Alpha estimate

tradeData.Shares = 100000;
tradeData.ADV = 1000000;
tradeData.Volatility = 0.25;
tradeData.Price = 35;
tradeData.POV = 0.5;
tradeData.Alpha_bp = 50;

Define Optimization Parameters

Define risk aversion level Lambda. Set Lambda from 0 to Inf.

Lambda = 1;

Define lower LB and upper UB bounds of strategy input for optimization.

LB = 0;
UB = 1;

Define the function handle fun for the objective function. To access the code for this
function, enter edit krgSingleStockOptimizer.m.

fun = @(pov)krgSingleStockOptimizer(pov,k,tradeData,Lambda);

Minimize Trading Costs for Trade Strategy

Minimize the trading costs for the percentage of volume trade strategy. fminbnd finds
the optimal value for the percentage of volume trade strategy based on the lower and
upper bound values. fminbnd finds a local minimum for the trading cost minimization
expression.

[tradeData.POV,totalcost] = fminbnd(fun,LB,UB);

 Optimize Percentage of Volume Trading Strategy

3-33

Display the optimized trade strategy tradeData.POV.

tradeData.POV

ans =

 0.35

Estimate Trading Costs for Optimized Strategy

Estimate the trading costs povCosts using the optimized trade strategy.

mi = marketImpact(k,tradeData);
pa = priceAppreciation(k,tradeData);
tr = timingRisk(k,tradeData);
povCosts = [totalcost mi pa tr];

Display trading costs.

povCosts

 100.04 56.15 4.63 39.27

The trading costs are:

• Total cost
• Market impact
• Price appreciation
• Timing risk

For details about the preceding calculations, contact the Kissell Research Group.

References
[1] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,

May 2006.

[2] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[3] Glantz, Morton, and Robert Kissell. Multi-Asset Risk Modeling. Cambridge, MA:
Elsevier/Academic Press, 2013.

3 Transaction Cost Analysis

3-34

[4] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

See Also
fminbnd | krg | marketImpact | priceAppreciation | timingRisk

Related Examples
• “Optimize Trade Time Trading Strategy” on page 3-36
• “Optimize Trade Schedule Trading Strategy” on page 3-40
• “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23
• “Estimate Portfolio Liquidation Costs” on page 3-27

 See Also

3-35

Optimize Trade Time Trading Strategy
This example shows how to optimize the strategy for a single stock by minimizing trading
costs using transaction cost analysis from the Kissell Research Group. The optimization
minimizes trading costs associated with the trade time trading strategy and a specified
risk aversion parameter Lambda. The trading cost minimization is expressed as

min MI + PA + Lambda ⋅ TR ,

where trading costs are market impact MI, price appreciation PA, and timing risk TR. For
details, see marketImpact, priceAppreciation, and timingRisk. This example finds
a local minimum for this expression. For details about searching for the global minimum,
see “Troubleshooting and Tips” (MATLAB).

Here, you can optimize the trade time trade strategy. To optimize percentage of volume
and trade schedule strategies, see “Optimize Percentage of Volume Trading Strategy” on
page 3-32 and “Optimize Trade Schedule Trading Strategy” on page 3-40.

To access the example code, enter edit KRGSingleStockOptimizationExample.m at
the command line.

Retrieve Market-Impact Parameters and Create Example Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact
date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k.

k = krg(miData);

3 Transaction Cost Analysis

3-36

Create Single Stock Data

The structure tradeData contains data for a single stock. Use a structure or table to
define this data. The fields are:

• Number of shares
• Average daily volume
• Volatility
• Stock price
• Initial trade time trade strategy
• Alpha estimate

tradeData.Shares = 100000;
tradeData.ADV = 1000000;
tradeData.Volatility = 0.25;
tradeData.Price = 35;
tradeData.TradeTime = 0.5;
tradeData.Alpha_bp = 50;

Define Optimization Parameters

Define risk aversion level Lambda. Set Lambda from 0 to Inf.

Lambda = 1;

Define lower LB and upper UB bounds of strategy input for optimization.

LB = 0;
UB = 1;

Define the function handle fun for the objective function. To access the code for this
function, enter edit krgSingleStockOptimizer.m.

fun = @(tradetime)krgSingleStockOptimizer(tradetime,k,tradeData,Lambda);

Minimize Trading Costs for Trade Strategy

Minimize the trading costs for the trade time trade strategy. fminbnd finds the optimal
value for the trade time trade strategy based on the lower and upper bound values.
fminbnd finds a local minimum for the trading cost minimization expression.

[tradeData.TradeTime,totalcost] = fminbnd(fun,LB,UB);

 Optimize Trade Time Trading Strategy

3-37

Display the optimized trade strategy tradeData.TradeTime.

tradeData.TradeTime

ans =

 0.19

Estimate Trading Costs for Optimized Strategy

Estimate the trading costs tradeTimeCosts using the optimized trade strategy.

mi = marketImpact(k,tradeData);
tr = timingRisk(k,tradeData);
pa = priceAppreciation(k,tradeData);
tradeTimeCosts = [totalcost mi pa tr];

Display trading costs.

tradeTimeCosts

tradeTimeCosts =

 100.04 56.15 4.63 39.27

The trading costs are:

• Total cost
• Market impact
• Price appreciation
• Timing risk

For details about the preceding calculations, contact the Kissell Research Group.

References
[1] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,

May 2006.

[2] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

3 Transaction Cost Analysis

3-38

[3] Glantz, Morton, and Robert Kissell. Multi-Asset Risk Modeling. Cambridge, MA:
Elsevier/Academic Press, 2013.

[4] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

See Also
fminbnd | krg | marketImpact | priceAppreciation | timingRisk

Related Examples
• “Optimize Percentage of Volume Trading Strategy” on page 3-32
• “Optimize Trade Schedule Trading Strategy” on page 3-40
• “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23
• “Estimate Portfolio Liquidation Costs” on page 3-27

 See Also

3-39

Optimize Trade Schedule Trading Strategy
This example shows how to optimize the strategy for a single stock by minimizing trading
costs using transaction cost analysis from the Kissell Research Group. The optimization
minimizes trading costs associated with the trade schedule trading strategy and a
specified risk aversion parameter Lambda. The trading cost minimization is expressed as

min MI + PA + Lambda ⋅ TR ,

where trading costs are market impact MI, price appreciation PA, and timing risk TR. For
details, see marketImpact, priceAppreciation, and timingRisk.

This example requires an Optimization Toolbox™ license. For background information,
see “Optimization Theory Overview” (Optimization Toolbox).

Here, you can optimize the trade schedule trade strategy. The optimization finds a local
minimum for this expression. For ways to search for the global minimum, see “Local vs.
Global Optima” (Optimization Toolbox). To optimize percentage of volume and trade time
strategies, see “Optimize Percentage of Volume Trading Strategy” on page 3-32 and
“Optimize Trade Time Trading Strategy” on page 3-36.

To access the example code, enter edit KRGSingleStockOptimizationExample.m at
the command line.

Retrieve Market-Impact Parameters

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact
date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k.

k = krg(miData);

3 Transaction Cost Analysis

3-40

Create Single Stock Data

The structure tradeData contains data for a single stock. Use a structure or table to
define this data. The fields are:

• Number of shares
• Average daily volume
• Volatility
• Stock price
• Alpha estimate

tradeData.Shares = 100000;
tradeData.ADV = 1000000;
tradeData.Volatility = 0.25;
tradeData.Price = 35;
tradeData.Alpha_bp = 50;

Define the number of trades and the volume per trade for the initial strategy. The fields
VolumeProfile and TradeSchedule define the initial trade schedule trade strategy.

numIntervals = 26;
tradeData.VolumeProfile = ones(1,numIntervals) * ...
 tradeData.ADV/numIntervals;
tradeData.TradeSchedule = ones(1,numIntervals) .* ...
 (tradeData.Shares./numIntervals);

Define Optimization Parameters

Define risk aversion level Lambda. Set Lambda from 0 to Inf.

Lambda = 1;

Define lower LB and upper UB bounds of shares traded per interval for optimization.

LB = zeros(1,numIntervals);
UB = ones(1,numIntervals) .* tradeData.Shares;

Specify constraints Aeq and Beq to denote that shares traded in the trade schedule must
match the total number of shares.

Aeq = ones(1,numIntervals);
Beq = tradeData.Shares;

 Optimize Trade Schedule Trading Strategy

3-41

Define the maximum number of function evaluations and iterations for optimization. Set
'MaxFunEvals' and 'MaxIter' to large values so that the optimization can iterate
many times to find a local minimum.

options = optimoptions('fmincon','MaxFunEvals',100000,'MaxIter',100000);

Define the function handle fun for the objective function. To access the code for this
function, enter edit krgSingleStockOptimizer.m.

fun = @(tradeschedule)krgSingleStockOptimizer(tradeschedule,k, ...
 tradeData,Lambda);

Minimize Trading Costs for Trade Strategy

Minimize the trading costs for the trade schedule trade strategy. fmincon finds the
optimal value for the trade schedule trade strategy based on the lower and upper bound
values. It does this by finding a local minimum for the trading cost.

[tradeData.TradeSchedule,totalcost,exitflag] = fmincon(fun, ...
 tradeData.TradeSchedule,[],[],Aeq,Beq,LB,UB,[],options);

To check whether fmincon found a local minimum, display the reason why the function
stopped.

exitflag

exitflag =

 1.00

fmincon returns 1 when it finds a local minimum. For details, see exitflag.

Display the optimized trade strategy tradeData.TradeSchedule.

tradeData.TradeSchedule

ans =

 Columns 1 through 5

 35563.33 18220.14 11688.59 8256.81 6057.39

 ...

3 Transaction Cost Analysis

3-42

Estimate Trading Costs for Optimized Strategy

Estimate trading costs tradeScheduleCosts using the optimized trade strategy.

mi = marketImpact(k,tradeData);
pa = priceAppreciation(k,tradeData);
tr = timingRisk(k,tradeData);
tradeScheduleCosts = [totalcost mi pa tr];

Display trading costs.

tradeScheduleCosts

tradeScheduleCosts =

 97.32 47.66 6.75 42.91

The trading costs are:

• Total cost
• Market impact
• Price appreciation
• Timing risk

For details about the preceding calculations, contact the Kissell Research Group.

References
[1] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,

May 2006.

[2] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[3] Glantz, Morton, and Robert Kissell. Multi-Asset Risk Modeling. Cambridge, MA:
Elsevier/Academic Press, 2013.

[4] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

 Optimize Trade Schedule Trading Strategy

3-43

See Also
fmincon | krg | marketImpact | optimoptions | priceAppreciation | timingRisk

Related Examples
• “Optimize Percentage of Volume Trading Strategy” on page 3-32
• “Optimize Trade Time Trading Strategy” on page 3-36
• “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23
• “Estimate Portfolio Liquidation Costs” on page 3-27

3 Transaction Cost Analysis

3-44

Estimate Trading Costs for Collection of Stocks
This example shows how to estimate four different trading costs for a collection of stocks
using Kissell Research Group transaction cost analysis.

Retrieve Market-Impact Parameters and Load Transaction Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact
date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k.

k = krg(miData);

Load the example data TradeData from the file KRGExampleData.mat, which is
included with the Trading Toolbox.

load KRGExampleData.mat TradeData

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Estimate Trading Costs

Estimate instantaneous trading cost itc using TradeData.

itc = iStar(k,TradeData);

Estimate market-impact cost mi.

mi = marketImpact(k,TradeData);

Estimate timing risk tr.

 Estimate Trading Costs for Collection of Stocks

3-45

tr = timingRisk(k,TradeData);

Estimate price appreciation pa.

pa = priceAppreciation(k,TradeData);

See Also
iStar | krg | marketImpact | priceAppreciation | timingRisk

More About
• “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23
• “Estimate Portfolio Liquidation Costs” on page 3-27
• “Optimize Percentage of Volume Trading Strategy” on page 3-32
• “Kissell Research Group Data Sets” on page 3-9

3 Transaction Cost Analysis

3-46

Conduct Back Test on Portfolio
This example shows how to conduct a back test on a set of stocks using transaction cost
analysis from the Kissell Research Group.

• Analyze the implementation of an investment strategy on a specific day or date range.
• Estimate historical market-impact costs and the corresponding dollar values for the
specified historical dates.

• Analyze the trading costs of different orders on various dates.

To access the example code, enter edit KRGBackTestingExample.m at the command
line.

Retrieve Market-Impact Parameters and Load Historical Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact
date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k. Specify initial settings
for the date, market-impact code, and number of trading days.

k = krg(miData,datetime('today'),1,250);

Load the example data TradeDataBackTest from the file KRGExampleData.mat, which
is included with the Trading Toolbox.

load KRGExampleData TradeDataBackTest

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

 Conduct Back Test on Portfolio

3-47

Prepare Data for Back Testing

Determine the number of stocks numRecords in the portfolio.

numRecords = length(TradeDataBackTest.Symbol);

Preallocate the output data table o.

o = table(TradeDataBackTest.Symbol,TradeDataBackTest.Side, ...
 TradeDataBackTest.Date,NaN(numRecords,1),NaN(numRecords,1), ...
 'VariableNames',{'Symbol','Side','Date','MI','MIDollar'});

Ensure that the number of shares is a positive value using the abs function.

TradeDataBackTest.Shares = abs(TradeDataBackTest.Shares);

Convert trade time trade strategy to the percentage of volume trade strategy.
TradeDataBackTest.TradeTime = TradeDataBackTest.TradeTime ...
 .* TradeDataBackTest.ADV;
TradeDataBackTest.POV = krg.tradetime2pov(TradeDataBackTest.TradeTime, ...
 TradeDataBackTest.Shares);

Conduct Back Test by Estimating Historical Market-Impact Costs

Estimate the historical market-impact costs for each stock in the portfolio on different
dates using marketImpact. Convert market-impact cost from decimal into local dollars.
Retrieve the resulting data in the output data table o.
for ii = 1:numRecords

 k.MiDate = TradeDataBackTest.Date(ii);
 k.MiCode = TradeDataBackTest.MICode(ii);

 o.MI(ii) = marketImpact(k,TradeDataBackTest(ii,:));
 MIDollars = (TradeDataBackTest.Shares(ii) * TradeDataBackTest.Price(ii)) ...
 * o.MI(ii)/10000 * TradeDataBackTest.FXRate(ii);

 o.MIDollar(ii) = MIDollars;

end

Display the first three rows of output data.

o(1:3,:)

ans =

 Symbol Side Date MI MIDollar
 ______ ____ __________ ____ ________

3 Transaction Cost Analysis

3-48

 'A' 1.00 '5/1/2015' 1.04 103.91
 'B' 1.00 '5/1/2015' 3.09 3864.44
 'C' 1.00 '5/1/2015' 8.54 5335.03

The output data contains these variables:

• Stock symbol
• Side
• Historical trade date
• Historical market-impact cost in basis points
• Historical market-impact value in local dollars

References
[1] Kissell, Robert. “Creating Dynamic Pre-Trade Models: Beyond the Black Box.” Journal

of Trading. Vol. 6, Number 4, Fall 2011, pp. 8–15.

[2] Kissell, Robert. “TCA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60–64.

[3] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[4] Chung, Grace and Robert Kissell. “An Application of Transaction Costs in the Portfolio
Optimization Process.” Journal of Trading. Vol. 11, Number 2, Spring 2016, pp.
11–20.

See Also
krg | marketImpact

More About
• “Conduct Stress Test on Portfolio” on page 3-50
• “Liquidate Dollar Value from Portfolio” on page 3-56
• “Kissell Research Group Data Sets” on page 3-9

 See Also

3-49

Conduct Stress Test on Portfolio
This example shows how to conduct a stress test on a set of stocks using transaction cost
analysis from the Kissell Research Group.

• Estimate historical market-impact costs and the corresponding dollar values for the
specified date range.

• Use trading costs to screen stocks in a portfolio and estimate the cost to liquidate or
purchase a specified number of shares.

• Analyze trading costs during volatile periods of time such as a financial crisis, flash
crash, or debt crisis.

To access the example code, enter edit KRGStressTestingExample.m at the
command line.

Retrieve Market-Impact Parameters and Load Historical Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact
date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Load the example data TradeDataStressTest from the file KRGExampleData.mat,
which is included with the Trading Toolbox.

load KRGExampleData TradeDataStressTest

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Create a Kissell Research Group transaction cost analysis object k. Specify initial settings
for the date, market-impact code, and number of trading days.

k = krg(miData,datetime('today'),1,250);

3 Transaction Cost Analysis

3-50

Prepare Data for Stress Testing

Specify the date range from May 1, 2015 through July 31, 2015.

startDate = '5/1/2015';
endDate = '7/31/2015';

Determine the number of stocks numStocks in the portfolio. Create a date range
dateRange from the specified dates. Find the number of days numDates in the date
range.

numStocks = length(TradeDataStressTest.Symbol);
dateRange = (datenum(startDate):datenum(endDate))';
numDates = length(dateRange);

Preallocate the output data table o.
outLength = numStocks*numDates;
symbols = TradeDataStressTest.Symbol(:,ones(1,numDates));
sides = TradeDataStressTest.Side(:,ones(1,numDates));
dates = dateRange(:,ones(1,numStocks))';

o = table(symbols(:),sides(:),dates(:),NaN(outLength,1),NaN(outLength,1), ...
 'VariableNames',{'Symbol','Side','Date','MI','MIDollar'});

Ensure that the number of shares is a positive value using the abs function.

TradeDataStressTest.Shares = abs(TradeDataStressTest.Shares);

Convert trade time trade strategy to the percentage of volume trade strategy.
TradeDataStressTest.TradeTime = TradeDataStressTest.TradeTime ...
 .* TradeDataStressTest.ADV;
TradeDataStressTest.POV = krg.tradetime2pov(TradeDataStressTest.TradeTime, ...
 TradeDataStressTest.Shares);

Conduct Stress Test by Estimating Historical Market-Impact Costs

Estimate the historical market-impact costs for each stock in the portfolio for the date
range using marketImpact. Convert market-impact cost from decimal into local dollars.
Retrieve the resulting data in the output data table o.

kk = 1;
for ii = dateRange(1):dateRange(end)

 for jj = 1:numStocks

 k.MiCode = TradeDataStressTest.MICode(jj);
 k.MiDate = ii;

 Conduct Stress Test on Portfolio

3-51

 o.MI(kk) = marketImpact(k,TradeDataStressTest(jj,:));
 o.MIDollar(kk) = (TradeDataStressTest.Shares(jj) ...
 * TradeDataStressTest.Price(jj)) ...
 * o.MI(kk) /10000 * TradeDataStressTest.FXRate(jj);

 kk = kk + 1;

 end

end

Display the first three rows of output data.

o(1:3,:)

ans =

 Symbol Side Date MI MIDollar
 ______ ____ _________ _____ ________

 'A' 1.00 736085.00 3.84 384.31
 'B' 1.00 736085.00 11.43 14292.24
 'C' 1.00 736085.00 32.69 20430.65

The output data contains these variables:

• Stock symbol
• Side
• Historical trade date
• Historical market-impact cost in basis points
• Historical market-impact value in local dollars

Retrieve the daily market-impact cost dailyCost. Determine the number of days
numDays in the output data. Loop through the data and sum the market-impact costs for
individual stocks for each day.

numDays = length(o.Date)/numStocks;

idx = 1;
for i = 1:numDays

 dailyCost.Date(i) = o.Date(idx);

3 Transaction Cost Analysis

3-52

 dailyCost.DailyMiCost(i) = sum(o.MI(idx:idx+(numStocks-1)));
 idx = idx+numStocks;

end

Display the daily market-impact cost in the specified date range. This figure demonstrates
how market-impact costs change over time.

plot(b.Date,b.DailyMiCost)
ylabel({'Daily Cost','(bps)'})
title('Daily Market-Impact Cost Stress Test')
xlabel('Date')
grid on
xData = linspace(b.Date(1),b.Date(92),11);
a = gca;
a.XAxis.TickLabels = datestr(xData,'mm/dd/yyyy');
a.XTickLabelRotation = 45;

 Conduct Stress Test on Portfolio

3-53

References
[1] Kissell, Robert. “Creating Dynamic Pre-Trade Models: Beyond the Black Box.” Journal

of Trading. Vol. 6, Number 4, Fall 2011, pp. 8–15.

[2] Kissell, Robert. “TCA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60–64.

3 Transaction Cost Analysis

3-54

[3] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[4] Chung, Grace and Robert Kissell. “An Application of Transaction Costs in the Portfolio
Optimization Process.” Journal of Trading. Vol. 11, Number 2, Spring 2016, pp.
11–20.

See Also
krg | marketImpact

More About
• “Conduct Back Test on Portfolio” on page 3-47
• “Liquidate Dollar Value from Portfolio” on page 3-56
• “Kissell Research Group Data Sets” on page 3-9

 See Also

3-55

Liquidate Dollar Value from Portfolio
This example shows how to liquidate a dollar value from a portfolio while minimizing
market-impact costs using transaction cost analysis from the Kissell Research Group. This
example always results in a portfolio that shrinks in size. The market-impact cost
minimization is expressed as

argmin
x

MI′ x ,

where MI is the market-impact cost for the traded shares and x denotes the final weights
for each stock.

This example requires an Optimization Toolbox license. For background information, see
“Optimization Theory Overview” (Optimization Toolbox).

The optimization finds a local minimum for the market-impact cost of liquidating a dollar
value from a portfolio. For ways to search for the global minimum, see “Local vs. Global
Optima” (Optimization Toolbox).

To access the example code, enter edit KRGLiquidityOptimizationExample.m at
the command line.

Retrieve Market-Impact Parameters and Load Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact
date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k. Specify initial settings
for the date, market-impact code, and number of trading days.

k = krg(miData,datetime('today'),1,250);

3 Transaction Cost Analysis

3-56

Load the example data TradeDataPortOpt and the covariance data CovarianceData
from the file KRGExampleData.mat, which is included with the Trading Toolbox. Limit
the data set to the first 10 rows.

load KRGExampleData.mat TradeDataPortOpt CovarianceData

n = 10;
TradeDataPortOpt = TradeDataPortOpt(1:n,:);
CovarianceData = CovarianceData(1:n,1:n);
C = table2array(CovarianceData);

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Define Optimization Parameters

Set the portfolio liquidation value to $100,000,000. Set the portfolio risk boundaries
between 90% and 110%. Set the maximum total market-impact cost to 50 basis points.
Determine the number of stocks in the portfolio. Retrieve the upper bound constraint for
the maximum market-impact cost for liquidating shares in each stock.

PortLiquidationValue = 100000000;
PortRiskBounds = [0.9 1.10];
maxTotalMI = 0.005;
numPortStocks = length(TradeDataPortOpt.Symbol);
maxMI = TradeDataPortOpt.UB_MaxMI;

Determine the target portfolio value PortfolioTargetValue by subtracting the
portfolio liquidation value from the total portfolio value.

PortfolioValue = sum(TradeDataPortOpt.Value);
absPortValue = abs(TradeDataPortOpt.Value);
PortfolioAbsValue = sum(absPortValue);
PortfolioTargetValue = PortfolioValue-PortLiquidationValue;

Determine the current portfolio weight w based on the value of each stock in the portfolio.

w = sign(TradeDataPortOpt.Shares).*absPortValue/PortfolioAbsValue;

Specify constraints Aeq and beq to indicate that the weights must sum to one. Initialize
the linear inequality constraints A and b.

Aeq = ones(1,numPortStocks);
beq = 1;

 Liquidate Dollar Value from Portfolio

3-57

A = [];
b = [];

Retrieve the lower and upper bounds for the final portfolio weight in
TradeDataPortOpt.

LB = TradeDataPortOpt.LB_Wt;
UB = TradeDataPortOpt.UB_Wt;

Determine the lower and upper bounds for the number of shares in the final portfolio
using other optional constraints in the example data set.

lbShares = max([TradeDataPortOpt.LB_MinShares, ...
 TradeDataPortOpt.LB_MinValue./TradeDataPortOpt.Price, ...
 TradeDataPortOpt.LB_MinPctADV.*TradeDataPortOpt.ADV],[],2);

ubShares = min([TradeDataPortOpt.UB_MaxShares, ...
 TradeDataPortOpt.UB_MaxValue./TradeDataPortOpt.Price, ...
 TradeDataPortOpt.UB_MaxPctADV.*TradeDataPortOpt.ADV],[],2);

Specify the initial portfolio weights.

x0 = TradeDataPortOpt.Value./sum(TradeDataPortOpt.Value);
x = x0;

Define optimization options. Set the optimization algorithm to sequential quadratic
programming. Set the termination tolerance on the function value and on x. Set the
tolerance on the constraint violation. Set the termination tolerance on the PCG iteration.
Set the maximum number of function evaluations 'MaxFunEvals' and iterations
'MaxIter'. The options 'MaxFunEvals' and 'MaxIter' are set to large values so that
the optimization can iterate many times to find a local minimum. Set the minimum change
in variables for finite differencing.

options = optimoptions('fmincon','Algorithm','sqp', ...
 'TolFun',10E-8,'TolX',10E-16,'TolCon',10E-8,'TolPCG',10E-8, ...
 'MaxFunEvals',50000,'MaxIter',50000,'DiffMinChange',10E-8);

Minimize Market-Impact Costs for Portfolio Liquidation

Define the function handle objectivefun for the sample objective function
krgLiquidityFunction. To access the code for this function, enter edit
krgLiquidityFunction.m. Define the function handle constraintsfun for the

3 Transaction Cost Analysis

3-58

sample function krgLiquidityConstraint that sets additional constraints. To access
the code for this function, enter edit krgLiquidityConstraint.m.
objectivefun = @(x) krgLiquidityFunction(x,TradeDataPortOpt, ...
 PortfolioTargetValue,k);

constraintsfun = @(x) krgLiquidityConstraint(x,w,C,TradeDataPortOpt, ...
 PortfolioTargetValue,PortRiskBounds,lbShares,ubShares,maxMI,maxTotalMI,k);

Minimize the market-impact costs for the portfolio liquidation. fmincon finds the optimal
value for the portfolio weight for each stock based on the lower and upper bound values.
It does this by finding a local minimum for the market-impact cost.

[x,~,exitflag] = fmincon(objectivefun,x0,A,b,Aeq,beq,LB,UB, ...
 constraintsfun,options);

To check whether fmincon found a local minimum, display the reason why the function
stopped.

exitflag

exitflag =

 1.00

fmincon returns 1 when it finds a local minimum. For details, see exitflag.

Determine the optimized weight value x1 of each stock in the portfolio in decimal format.

x1 = x.*PortfolioTargetValue/PortfolioValue;

Determine the optimized portfolio target value TargetValue and number of shares
SharesToTrade for each stock in the portfolio.

TargetShares = x*PortfolioTargetValue./TradeDataPortOpt.Price;
SharesToTrade = TradeDataPortOpt.Shares-TargetShares;
TargetValue = x*PortfolioTargetValue;
TradeDataPortOpt.Shares = abs(SharesToTrade);

Determine the optimized percentage of volume strategy.

TradeDataPortOpt.TradeTime = TradeDataPortOpt.TradeTime ...
 .* TradeDataPortOpt.ADV;
TradeDataPortOpt.POV = krg.tradetime2pov(TradeDataPortOpt.TradeTime, ...
 TradeDataPortOpt.Shares);

Estimate the market-impact costs MI for the number of shares to liquidate.

 Liquidate Dollar Value from Portfolio

3-59

MI = marketImpact(k,TradeDataPortOpt)/10000;

To view the market-impact cost in decimal format, specify the display format. Display the
market-impact cost for the first three stocks in the portfolio.

format

MI(1:3)

ans =

 1.0e-03 *

 0.1477
 0.1405
 0.1405

To view the target number of shares with two decimal places, specify the display format.
Display the target number of shares for the first three stocks in the portfolio.

format bank

TargetShares(1:3)

ans =

 -23640.11
 -154656.73
 -61193.04

The negative values denote selling shares from the portfolio.

Display the traded value for the first three stocks in the portfolio.

TargetValue(1:3)

ans =

 -968062.45
 -1521760.41
 -2448131.64

3 Transaction Cost Analysis

3-60

To simulate trading the target number of shares on a historical date range, you can now
conduct a stress test on the optimized portfolio. For details about conducting a stress test,
see “Conduct Stress Test on Portfolio” on page 3-50.

References
[1] Kissell, Robert. “Creating Dynamic Pre-Trade Models: Beyond the Black Box.” Journal

of Trading. Vol. 6, Number 4, Fall 2011, pp. 8–15.

[2] Kissell, Robert. “TCA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60–64.

[3] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[4] Chung, Grace and Robert Kissell. “An Application of Transaction Costs in the Portfolio
Optimization Process.” Journal of Trading. Vol. 11, Number 2, Spring 2016, pp.
11–20.

See Also
fmincon | krg | marketImpact | optimoptions

More About
• “Conduct Stress Test on Portfolio” on page 3-50
• “Optimize Trade Schedule Trading Strategy” on page 3-40
• “Optimize Long Portfolio” on page 3-62
• “Kissell Research Group Data Sets” on page 3-9

 See Also

3-61

Optimize Long Portfolio
This example shows how to determine the optimal portfolio weights for a specified dollar
value using transaction cost analysis from the Kissell Research Group. The sample
portfolio contains only long shares of stock. You can incorporate risk, return, and market-
impact cost during implementation of the investment decision.

This example requires an Optimization Toolbox license. For background information, see
“Optimization Theory Overview” (Optimization Toolbox).

The KRGPortfolioOptimizationExample function, which you can access by entering
edit KRGPortfolioOptimizationExample.m, addresses three different optimization
scenarios:

1 Maximize the trade off between net portfolio return and portfolio risk. The trade off
maximization is expressed as

argmax
x

R′x−MI′ x − λx′Cx ,

where:

• R is the estimated return for each stock in the portfolio.
• x denotes the weights for each stock in the portfolio.
• MI is the market-impact cost for the specified dollar value and share quantities.
• λ is the specified risk aversion parameter.
• C is the covariance matrix of the stock data.

2 Minimize the portfolio risk subject to a minimum return target using

argmin
x

x′Cx .

3 Maximize net portfolio return subject to a maximum risk exposure target using

argmax
x

R′x−MI′ x .

Lower and upper bounds constrain x in each scenario. Each optimization finds a local
optimum. For ways to search for the global optimum, see “Local vs. Global Optima”
(Optimization Toolbox).

3 Transaction Cost Analysis

3-62

Retrieve Market-Impact Parameters and Load Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact
date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k. Specify initial settings
for the date, market-impact code, and number of trading days.

k = krg(miData,datetime('today'),1,250);

Load the example data TradeDataPortOpt and the covariance data CovarianceData
from the file KRGExampleData.mat, which is included with the Trading Toolbox. Limit
the data set to the first 50 rows.

load KRGExampleData TradeDataPortOpt CovarianceData

n = 50;
TradeDataPortOpt = TradeDataPortOpt(1:n,:);
CovarianceData = CovarianceData(1:n,1:n);

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Maximize Net Portfolio Return

Run the optimization scenario using the example and covariance data. To run the first
optimization, specify 1 in the last input argument.
[Weight,Shares,Value,MI] = KRGPortfolioOptimizationExample(TradeDataPortOpt, ...
 CovarianceData,1);

KRGPortfolioOptimizationExample returns the optimized values for each stock in
the portfolio:

 Optimize Long Portfolio

3-63

• Portfolio weight
• Number of shares
• Portfolio dollar value
• Market-impact cost

To run the other two scenarios, specify 2 or 3 in the last input argument of
KRGPortfolioOptimizationExample.

Display the portfolio weight for the first three stocks in the portfolio in decimal format.

format

Weight(1:3)

ans =

 0.0100
 0.3198
 0.1610

Display the number of shares using two decimal places for the first three stocks in the
portfolio.

format bank

Shares(1:3)

ans =

 24420.02
 3249893.71
 402364.47

Display the portfolio dollar value for the first three stocks in the portfolio.

Value(1:3)

ans =

 1000000.00
 31977654.17
 16097274.50

Display the market-impact cost for the first three stocks in the portfolio in decimal format.

3 Transaction Cost Analysis

3-64

format

MI(1:3)

ans =

 1.0e-03 *

 0.1250
 0.7879
 0.3729

References
[1] Kissell, Robert. “Creating Dynamic Pre-Trade Models: Beyond the Black Box.” Journal

of Trading. Vol. 6, Number 4, Fall 2011, pp. 8–15.

[2] Kissell, Robert. “TCA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60–64.

[3] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[4] Chung, Grace and Robert Kissell. “An Application of Transaction Costs in the Portfolio
Optimization Process.” Journal of Trading. Vol. 11, Number 2, Spring 2016, pp.
11–20.

See Also
fmincon | krg | marketImpact | optimoptions

More About
• “Optimize Trade Schedule Trading Strategy” on page 3-40
• “Liquidate Dollar Value from Portfolio” on page 3-56
• “Kissell Research Group Data Sets” on page 3-9

 See Also

3-65

Determine Buy-Sell Imbalance Using Cost Index
This example shows how to determine buy-sell imbalance using transaction cost analysis
from the Kissell Research Group. Imbalance is the difference between buy-initiated and
sell-initiated volume given actual market conditions on the day and over the specified
trading period. A positive imbalance indicates buying pressure in the stock and a negative
imbalance indicates selling pressure. The cost index helps investors to understand how
the trading cost environment affects the order flow in the market. The index can be a
performance-based index, such as the S&P 500, that shows market movement and value
or a volatility index that shows market uncertainty.

The imbalance share quantity is the value of x such that

0 = MICost ⋅ 10000−MI x ,

where

MI x = b1 ⋅
x

Volume
a4

+ 1− b1 ⋅ a1 ⋅
x

ADV
a2
⋅ σa3 ⋅ Pricea5 .

MI is the market-impact cost for a stock transaction. The estimated trading costs
represent the incremental price movement of the stock in relation to the underlying index
price movement. Volume is the actual daily volume of a stock in the basket. ADV is the
average daily volume of a stock in the basket. Price is the price of a stock in the basket.
The other variables in the equations are:

• σ — Price volatility.
• a1 — Price sensitivity to order flow.
• a2 — Order size shape.
• a3 — Volatility shape.
• a4 — Percentage of volume rate shape.
• a5 — Price shape.
• 1− b1 — Percentage of permanent market impact. Permanent impact is the

unavoidable impact cost that occurs because of the information content of the trade.
• b1 — Percentage of temporary market impact. Temporary impact is dependent upon

the trading strategy. Temporary impact occurs because of the liquidity demands of the
investor.

3 Transaction Cost Analysis

3-66

• MICost = TotalCost − Beta ⋅ IndexCost, where:

• TotalCost — Change in the volume-weighted average price compared to the open
price for the stocks.

• Beta — Beta.
• IndexCost — Change in the volume-weighted average price compared to the open

price for the index. Index cost adjusts the price for market movement using an
underlying index and beta.

In this example, you can run this code using current or historical data. Current data
includes prices starting from the open time through the current time. Historical data uses
the prices over the entire day. Historical costs use market-impact parameters for the
specified region and date. Therefore, historical costs change from record to record.

For a current cost index, you load the example table TradeDataCurrent from the file
KRGExampleData.mat. For a historical cost index, you load the example table
TradeDataHistorical from the file KRGExampleData.mat. This example calculates a
current cost index.

To access the example code, enter edit KRGCostIndexExample.m at the command
line.

After running this code, you can submit an order for execution using Bloomberg, for
example.

This example requires an Optimization Toolbox license. For background information, see
“Optimization Theory Overview” (Optimization Toolbox).

Retrieve Market-Impact Parameters and Load Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact
date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

 Determine Buy-Sell Imbalance Using Cost Index

3-67

Create a Kissell Research Group transaction cost analysis object k. Specify initial settings
for the date, market-impact code, and number of trading days.

k = krg(miData,datetime('today'),1,250);

Load the example data TradeDataCurrent, which is included with the Trading Toolbox.
Calculate the number of stocks in the portfolio.

load KRGExampleData.mat TradeDataCurrent
TradeData = TradeDataCurrent;

numStocks = height(TradeData);

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Define Optimization Parameters

Define the maximum number of function iterations for optimization. Set
'MaxIterations' to a large value so that the optimization can iterate many times to
solve a system of nonlinear equations.

options = optimoptions('fsolve','MaxIterations',4000);

Estimate Trading Costs Using Cost Index

Determine the total cost and beta cost. Calculate the side of the initial market-impact cost
estimate. Determine the initial volume x0.

totalCost = TradeData.VWAP ./ TradeData.Open - 1;
indexCost = TradeData.Beta .* ...
 (TradeData.IndexVWAP ./ TradeData.IndexOpen - 1);
miCost = totalCost - indexCost;
sideIndicator = sign(miCost);
x0 = 0.5 * TradeData.Volume;

Create a table that stores all output data. First, add these variables:

• Symbol — Stock symbol
• Date — Transaction date
• Side — Side
• TotalVolume — Transaction volume

3 Transaction Cost Analysis

3-68

• TotalCost — Total transaction cost
• IndexCost — Index cost

costIndexTable = table;
costIndexTable.Symbol = TradeData.Symbol;
costIndexTable.Date = TradeData.Date;
costIndexTable.Side = sideIndicator;
costIndexTable.TotalVolume = TradeData.Volume;
costIndexTable.TotalCost = totalCost;
costIndexTable.IndexCost = indexCost;

Use a for-loop to calculate the cost index for each stock in the portfolio. Each stock
might have different market-impact codes and dates. Use the costIndexExampleEq
function that contains the nonlinear equation to solve. To access the code for the
costIndexExampleEq function, enter edit KRGCostIndexExample.m.

Add these variables to the output table:

• Imbalance — Imbalance
• ImbalancePctADV — Imbalance as percentage of average daily volume
• ImbalancePctDayVolume — Imbalance as percentage of the daily volume
• BuyVolume — Buy volume
• SellVolume — Sell volume
• MI — Market-impact cost
• ExcessCost — Excess cost
for i = 1:numStocks

 % Set the MiCode and MiDate of the object for each stock
 k.MiCode = TradeData.MICode(i);
 k.MiDate = TradeData.Date(i);

 % Solve for Shares for each stock that results in the target market
 % impact cost.

 % In this example, x is the number of shares (imbalance) that causes
 % the MI impact cost, the number of shares that result in a market
 % impact cost of MI. Here use abs(MI) since market-impact
 % cost is always positive. If the market-impact cost is 0.0050 then
 % fsolve tries to find the number of shares x so that the market
 % impact formula returns 0.0050.
 % Note that fsolve is using the cost in basis points.
 x = fsolve(@(x) costIndexExampleEq(x,miCost(i),TradeData(i,:),k), ...
 x0(i),options);

 % The imbalance must be between 0 and the actual traded volume.
 x = max(min(x,TradeData.Volume(i)),0);

 Determine Buy-Sell Imbalance Using Cost Index

3-69

 % Recalculate the percentage of volume and shares based on x.
 TradeData.POV(i) = x/TradeData.Volume(i);
 TradeData.Shares(i) = x;

 % Calculate the new cost as a decimal value.
 mi = marketImpact(k,TradeData(i,:))/10000;

 % imbalance is the share amount specified as buy or sell by the
 % sideIndicator.
 imbalance = sideIndicator(i) * x;

 % Calculate the buy and sell volumes.
 % Knowing that:
 %
 % Volume = buyVolume + sellVolume;
 % Imbalance = buyVolume - sellVolume;
 %
 % Solve for buyVolume and sellVolume
 buyVolume = (TradeData.Volume(i) + imbalance) / 2;
 sellVolume = (TradeData.Volume(i) - imbalance) / 2;

 % Fill output table
 costIndexTable.Imbalance(i,1) = imbalance;
 costIndexTable.ImbalancePctADV(i,1) = imbalance/TradeData.ADV(i);
 costIndexTable.ImbalancePctDayVolume(i,1) = imbalance/TradeData.Volume(i);
 costIndexTable.BuyVolume(i,1) = buyVolume;
 costIndexTable.SellVolume(i,1) = sellVolume;
 costIndexTable.MI(i,1) = mi * sideIndicator(i);
 costIndexTable.ExcessCost(i,1) = totalCost(i) - mi - indexCost(i);

end

Display the imbalance amount for the first stock in the output data.

costIndexTable.Imbalance(1)

ans =

 -8.7894e+04

The negative imbalance amount indicates selling pressure. Decide whether to buy, hold,
or sell shares of this stock in the portfolio.

For details about the preceding calculations, contact the Kissell Research Group.

References
[1] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.

Cambridge, MA: Elsevier/Academic Press, 2013.

[2] Malamut, Roberto. “Multi-Period Optimization Techniques for Trade Scheduling.”
Presentation at the QWAFAFEW New York Conference, April 2002.

3 Transaction Cost Analysis

3-70

[3] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

See Also
fsolve | krg | marketImpact | optimoptions

More About
• “Conduct Back Test on Portfolio” on page 3-47
• “Conduct Stress Test on Portfolio” on page 3-50
• “Kissell Research Group Data Sets” on page 3-9

 See Also

3-71

Rank Broker Performance
This example shows how to determine the best performing brokers across transactions
using transaction cost analysis from the Kissell Research Group. You rank brokers based
on broker value add and arrival cost, and then determine which brokers perform best in
which market conditions and trading characteristics. A positive value add indicates that
the broker exceeds performance expectations given actual market conditions and trade
characteristics, which results in fund savings. A negative value add indicates that the
broker did not meet performance expectations, which result in an incremental cost to the
fund.

In this example, you find which brokers over- or under-perform by comparing arrival costs
and estimated trading costs. A broker with an arrival cost that is less than the estimated
trading cost over-performs, which causes the fund to save money. A broker with an arrival
cost that is greater than the estimated trading cost under-performs, which causes the
fund to incur an incremental cost.

This example also shows how to estimate costs by broker, which requires custom market-
impact parameters for each broker.

You can use similar steps as in this example to rank trading venues and algorithms.

To access the example code, enter edit KRGTradePerformanceRankingExample.m at
the command line.

After executing the code in this example, you can submit an order for execution using
Bloomberg, for example.

Retrieve Market-Impact Parameters and Load Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data with broker codes in the
MI_Broker.csv file. miData contains the encrypted market-impact date, code, and
parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Broker.csv');
close(f)

miData = readtable('MI_Broker.csv','delimiter',',', ...
 'ReadRowNames',false,'ReadVariableNames',true);

3 Transaction Cost Analysis

3-72

Create a Kissell Research Group transaction cost analysis object k. Specify initial settings
for the date, market-impact code, and number of trading days.

k = krg(miData,datetime('today'),1,250);

Load the example data TradeData, Basket, and BrokerNames, which is included with
the Trading Toolbox.

load KRGExampleData.mat TradeData Basket BrokerNames

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Calculate Costs for Each Broker

Select the trade categories. Calculate the average arrival cost, market-impact cost, and
broker value add for each broker.

TradeData.TradeSize = TradeData.Shares ./ TradeData.ADV;
TradeData.ArrivalCost = TradeData.SideIndicator .* ...
 (TradeData.AvgExecPrice ./ TradeData.ArrivalPrice-1) * 10000;
TradeData.MI = marketImpact(k,TradeData);
TradeData.ValueAdd = TradeData.MI - TradeData.ArrivalCost;

Retrieve broker names and the number of brokers. Preallocate output data variables.

uniqueBrokers = unique(TradeData.Broker);
numBrokers = length(uniqueBrokers);
avgCost = NaN(numBrokers,1);
avgMI = NaN(numBrokers,1);
avgValueAdd = NaN(numBrokers,1);

Rank Brokers by Average Broker Value Add

Calculate broker ranking using a transaction size between 5% and 10% of average daily
volume (ADV). Calculate average arrival cost, average market-impact cost, and average
broker value add.
indBroker = (TradeData.TradeSize >= 0.05) & (TradeData.TradeSize <= 0.10);

if any(indBroker)
 TD = TradeData(indBroker,:);
 for i = 1:numBrokers
 j = strcmp(TD.Broker,uniqueBrokers(i));
 if any(j)
 avgCost(i) = mean(TD.ArrivalCost(j));
 avgMI(i) = mean(TD.MI(j));
 avgValueAdd(i) = mean(TD.ValueAdd(j));

 Rank Broker Performance

3-73

 end
 end
end

% Get valid average cost values (non NaN's)
indAvgCost = ~isnan(avgCost);

Create a table to store the broker ranking. Sort the ranking by average cost.
BrokerRankings = table(uniqueBrokers(indAvgCost),(1:sum(indAvgCost))', ...
 avgCost(indAvgCost),avgMI(indAvgCost),avgValueAdd(indAvgCost), ...
 'VariableNames',{'Broker','Rank','AvgArrivalCost','AvgMI','AvgValueAdd'});
BrokerRankings = sortrows(BrokerRankings,-5);
BrokerRankings.Rank = (1:sum(indAvgCost))'; % Reset rank

Compare the average broker value add in basis points using a bar graph.

bar(BrokerRankings.AvgValueAdd)
set(gca,'XTickLabel',BrokerRankings.Broker)
ylabel('Average Value Add (bp)')
title('Average Value Add by Broker')
grid

3 Transaction Cost Analysis

3-74

The broker Broker2 over-performs while Broker3 under-performs across transactions.
Decide to use Broker2 for future transactions.

Estimate Trading Costs for Trade List

Estimate the trading costs for each broker using a specified order or trade list.
% Get the number of orders from the trade list table
numOrders = size(Basket.Symbols,1);

 Rank Broker Performance

3-75

% Calculate pre-trade cost for each broker for each order
BrokerPreTrade = zeros(numOrders,numBrokers);
for i = 1:numBrokers
 % Market-impact code for broker corresponds to the MICode in the market
 % impact data, for example, Broker1 = 1.
 k.MiCode = i;

 % Calculate market-impact cost for each broker
 BrokerPreTrade(:,i) = marketImpact(k,Basket);
end

% Convert output to a table with the symbols used as the row names.
BrokerPreTrade = array2table(BrokerPreTrade,'VariableNames', ...
 BrokerNames.Broker,'RowNames',Basket.Symbols);

Compare Market-Impact Costs by Broker

For one stock ABC, compare market-impact cost in basis points for each broker using a
bar graph.

% Plot best broker for given stock
bar(table2array(BrokerPreTrade(1,:)))
set(gca,'XTickLabel',BrokerNames.Broker)
ylabel('Market-Impact Cost (bp)')
title(['Market-Impact Cost by Broker for Symbol ' ...
 BrokerPreTrade.Properties.RowNames{1}])
grid

3 Transaction Cost Analysis

3-76

The broker Broker8 has the highest market-impact cost and Broker1 has the lowest
one. Decide to use Broker1 for executing the transaction using stock ABC.

For details about the preceding calculations, contact the Kissell Research Group.

References
[1] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.

Cambridge, MA: Elsevier/Academic Press, 2013.

[2] Malamut, Roberto. “Multi-Period Optimization Techniques for Trade Scheduling.”
Presentation at the QWAFAFEW New York Conference, April 2002.

 Rank Broker Performance

3-77

[3] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

See Also
krg | marketImpact

More About
• “Analyze Trading Execution Results” on page 3-2
• “Post-Trade Analysis Metrics Definitions” on page 3-6
• “Kissell Research Group Data Sets” on page 3-9

3 Transaction Cost Analysis

3-78

Optimize Trade Schedule Trading Strategy for Basket
This example shows how to optimize the strategy for a basket by minimizing trading costs
using transaction cost analysis from the Kissell Research Group. Using this optimization,
you determine the optimal order slicing strategy for the basket based on the trade-off
between trading cost, risk, and the specified level of risk aversion. The optimization
minimizes trading costs associated with the trade schedule trading strategy and a
specified risk aversion parameter Lambda. The trading cost minimization is expressed as

min MI + PA + Lambda ⋅ TR ,

where trading costs are market impact MI, price appreciation PA, and timing risk TR.

To access the example code, enter edit KRGTradeOptimizationExample.m at the
command line. In this example, you can run this code using a trade schedule trading
strategy or a percentage of volume trading strategy. This example shows the trade
schedule trading strategy. An exponential function determines the optimal trade schedule.

After executing the code in this example, you can submit an order for execution using
Bloomberg, for example.

This example requires an Optimization Toolbox license. For background information, see
“Optimization Theory Overview” (Optimization Toolbox).

Retrieve Market-Impact Parameters and Load Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the
FTP site using the ftp function with a user name and password. Navigate to the
MI_Parameters folder and retrieve the market-impact data in the
MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact
date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k. Specify initial settings
for the date, market-impact code, and number of trading days.

k = krg(miData,datetime('today'),1,250);

 Optimize Trade Schedule Trading Strategy for Basket

3-79

Load the example data TradeDataTradeOpt and the covariance data
CovarianceTradeOpt from the file KRGExampleData.mat, which is included with the
Trading Toolbox.

load KRGExampleData TradeDataTradeOpt CovarianceTradeOpt

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Define Optimization Parameters

Specify initial values for risk, trading periods, portfolio value, and covariance matrix.
Convert to a buy-only problem. Set the initial trade schedule.
% Convert table to array
CovarianceTradeOpt = table2array(CovarianceTradeOpt);

% Use total trading time of 1 day with 13 trading periods
totalDays = 1;
periodsPerDay = 13;

% Set risk aversion level
Lambda = 0.5;

% Set minimum and maximum percentage of volume
minPOV = 0.00;
maxPOV = 0.60;

% total number of trading periods
totalNumberPeriods = totalDays * periodsPerDay;

% Portfolio Value
PortfolioValue = TradeDataTradeOpt.Price'*TradeDataTradeOpt.Shares;

% Number of stocks
numberStocks = height(TradeDataTradeOpt);

% Covariance matrix is annualized covariance matrix in decimals.
% Convert to ($/Shares)^2 units for the trade period; this matrix is for a
% two-sided portfolio, buys and sells or long and short.
CC = diag(TradeDataTradeOpt.Price) * CovarianceTradeOpt * ...
 diag(TradeDataTradeOpt.Price);

% Scale to one trading period
CC = CC / periodsPerDay / k.TradeDaysInYear;

% Convert to buy-only problem (e.g., one-sided problem)
CC = TradeDataTradeOpt.SideIndicator * TradeDataTradeOpt.SideIndicator' .* CC;

% Convert Alpha_bp from basis points per day to cents/share per period
TradeDataTradeOpt.Alpha_bp = TradeDataTradeOpt.Alpha_bp / 1000 .* ...
 TradeDataTradeOpt.Price / totalNumberPeriods;

% Set the initial trade schedule or POV values
theta0 = rand(numberStocks,1);

3 Transaction Cost Analysis

3-80

Define optimization options using the optimset function. For details about these options,
see “Optimization Options Reference” (Optimization Toolbox).
optionsold = optimset;
options = optimset(optionsold,'LargeScale','on','GradObj','off', ...
 'DerivativeCheck','off','FinDiffType','central','FinDiffRelStep',1E-12, ...
 'TolFun',10E-5,'TolX',10E-12,'TolCon',10E-12,'TolPCG',10E-12, ...
 'MaxFunEvals',20000,'MaxIter',20000,'DiffMinChange',10E-04);

Define lower and upper bounds of shares traded per interval for optimization.

LB = zeros(numberStocks,1);
UB = 100 * ones(numberStocks,1);

Minimize Trading Costs for Trade Strategy

Minimize the trading costs for the trade schedule strategy. fmincon finds the optimal
value for the trade schedule trade strategy based on the lower and upper bound values. It
does this by finding a local minimum for the trading cost. Use the objective function
optimizeTradingSchedule. To access the code for this function, enter edit
KRGTradeOptimizationExample.m.
[theta,fval,exitflag,output] = fmincon(@optimizeTradingSchedule,theta0,[], ...
 [],[],[],LB,UB,[],options,totalNumberPeriods,numberStocks,periodsPerDay, ...
 TradeDataTradeOpt,CC,Lambda,k);

To check whether fmincon found a local minimum, display the reason why the function
stopped.

exitflag

exitflag =

 1.00

fmincon returns 1 when it finds a local minimum. For details, see exitflag.

Calculate shares to trade, residual shares, price appreciation, and timing risk. Then,
calculate the average percentage of volume rate and trade time.
numPeriods = 1:totalNumberPeriods;
K_Matrix = repmat(numPeriods,numberStocks,1);
Theta_Matrix = repmat(theta,1,totalNumberPeriods);
Volume_Matrix = repmat(TradeDataTradeOpt.ADV/periodsPerDay,1, ...
 totalNumberPeriods);
TradeDataTradeOpt.VolumeProfile = Volume_Matrix;
Shares_Matrix = repmat(TradeDataTradeOpt.Shares,1,totalNumberPeriods);

% X = Shares to trade in period i
Xpct = (exp(-K_Matrix .* Theta_Matrix) .* (exp(Theta_Matrix)-1)) ./ ...
 (1 - exp(-totalNumberPeriods * Theta_Matrix));

 Optimize Trade Schedule Trading Strategy for Basket

3-81

X = repmat(TradeDataTradeOpt.Shares,1,totalNumberPeriods) .* Xpct;
TradeDataTradeOpt.TradeSchedule = X;

% R = Residual Shares at beginning of period i
Rpct = (exp(-(K_Matrix-1).*Theta_Matrix) - exp(-totalNumberPeriods.*Theta_Matrix)) ./ ...
 (1-exp(-totalNumberPeriods.*Theta_Matrix));
R = repmat(TradeDataTradeOpt.Shares,1,totalNumberPeriods) .* Rpct;

% Price Appreciations in Dollars
PA = sum(R,2) .* TradeDataTradeOpt.Alpha_bp;

% Market Impact in Dollars
MI = marketImpact(k,TradeDataTradeOpt) .* TradeDataTradeOpt.Shares .* ...
 TradeDataTradeOpt.Price ./10000;

% Timing Risk in Dollars
TR = sqrt(sum(R.^2,2) .* diag(CC));
TR_bp = TR ./ (TradeDataTradeOpt.Shares .* TradeDataTradeOpt.Price) * 10000;

% Avg POV Rate
kTR = ((TR_bp/10000*1./TradeDataTradeOpt.Volatility).^2).*(k.TradeDaysInYear*3 ./ ...
 (TradeDataTradeOpt.Shares./TradeDataTradeOpt.ADV));
POV = 1./(1+kTR);
POV = max(POV,TradeDataTradeOpt.Shares./(TradeDataTradeOpt.Shares+totalDays .* ...
 TradeDataTradeOpt.ADV));

% TradeTime
TradeDataTradeOpt.TradeTime = TradeDataTradeOpt.Shares./TradeDataTradeOpt.ADV .* ...
 (1-POV)./POV;

Estimate total trading costs using the optimized trade strategy.
TotMI = sum(MI) / (TradeDataTradeOpt.Shares' * TradeDataTradeOpt.Price) ...
 .* 10000; % bp
TotPA = sum(PA) / (TradeDataTradeOpt.Shares' * TradeDataTradeOpt.Price) ...
 .* 10000; % bp
TotTR = sqrt(trace(R'*CC*R)) ./ (TradeDataTradeOpt.Shares' * ...
 TradeDataTradeOpt.Price) * 10000;

Display total market-impact cost, price appreciation, and timing risk.

totalcosts = [TotMI TotPA TotTR]

totalcosts =

 38.2902 0 26.5900

For details about the preceding calculations, contact the Kissell Research Group.

References
[1] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.

Cambridge, MA: Elsevier/Academic Press, 2013.

3 Transaction Cost Analysis

3-82

[2] Malamut, Roberto. “Multi-Period Optimization Techniques for Trade Scheduling.”
Presentation at the QWAFAFEW New York Conference, April 2002.

[3] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

See Also
fmincon | krg | marketImpact | optimset | priceAppreciation | timingRisk

More About
• “Optimize Trade Schedule Trading Strategy” on page 3-40
• “Optimize Percentage of Volume Trading Strategy” on page 3-32
• “Optimize Trade Time Trading Strategy” on page 3-36
• “Kissell Research Group Data Sets” on page 3-9

 See Also

3-83

Create Basket Summary and Efficient Trading Frontier
This example shows how to evaluate trading cost and risk components for a basket using
transaction cost analysis from the Kissell Research Group. To create a basket summary,
estimate trading costs for the entire basket using basket optimization techniques, and
then calculate risk statistics for the basket. Using the basket summary, you can provide
brokers and third parties with enough information to assess the overall execution costs
and trading difficulty of the basket. The basket summary enables providing transaction
information without revealing the actual orders. Another way brokers use a basket
summary is to assess a fair value principal bid estimate. A principal bid is a transaction
where the broker charges a bid premium that is higher than the associated commission.
Brokers present this transaction with guaranteed completion for a given price.

In this example, you can see a basket summary analysis table and a principal bid
summary. The basket summary provides trading cost estimates for the basket across
different categories, such as side, market capitalization, and market sector. The principal
bid summary contains the efficient trading frontier that provides the different estimated
trading costs for different time periods. The efficient trading frontier shows how cost and
risk change by trading more aggressively or passively. With passive trading, market
impact decreases as timing risk increases. With aggressive trading, market impact
increases as timing risk decreases.

The code in this example depends on the output data from the example “Optimize Trade
Schedule Trading Strategy for Basket” on page 3-79. Run the code in that example first
and then run the code in this example.

To access the example code, enter edit KRGBasketAnalysisExample.m at the
command line.

After executing the code in this example, you can submit an order for execution using
Bloomberg, for example.

Estimate Trading Costs in Basket

Determine the covariance matrix. Covariance indicates how the prices of stocks in the
basket relate to each other.
% Covariance matrix is annualized covariance matrix in decimals.
% Convert to ($/Shares)^2 units for the trade period, this matrix is for a
% two-sided portfolio, buys and sells or long and short.
diagPrice = diag(TradeDataTradeOpt.Price);
C1 = TradeDataTradeOpt.SideIndicator * TradeDataTradeOpt.SideIndicator' .* ...
 diagPrice * CovarianceTradeOpt * diagPrice;

3 Transaction Cost Analysis

3-84

% Covariance Matrix in $/Share^2 by Day
CD = diagPrice * CovarianceTradeOpt * diagPrice; % compute Covariance Matrix in ($/share)^2
CD = CD / k.TradeDaysInYear; % scale to 1-day
CD = TradeDataTradeOpt.SideIndicator * TradeDataTradeOpt.SideIndicator' ...
 .* CD;

Add the estimated trading costs from the trade schedule optimization to the basket data.

% Market impact in basis points
TradeDataTradeOpt.MI = MI ./ (TradeDataTradeOpt.Shares .* ...
 TradeDataTradeOpt.Price) .* 10000;

% Timing risk in basis points
TradeDataTradeOpt.TR = TR ./ (TradeDataTradeOpt.Shares .* ...
 TradeDataTradeOpt.Price) .* 10000;

% Percentage of volume, price appreciation and liquidity factor
TradeDataTradeOpt.POV = POV;
TradeDataTradeOpt.PA = PA;
TradeDataTradeOpt.LF = liquidityFactor(k,TradeDataTradeOpt);

Calculate trading costs in basis points, cents per share, and dollars.
% Build optimal cost table
OptimalCostTable = table(cell(3,1),zeros(3,1),zeros(3,1),zeros(3,1), ...
 zeros(3,1),'VariableNames',{'CostUnits','MI','PA','TotalCost','TR'});
OptimalCostTable.CostUnits(1) = {'Basis Points'};
OptimalCostTable.CostUnits(2) = {'Cents per Share'};
OptimalCostTable.CostUnits(3) = {'Dollars'};

% Market impact,
OptimalCostTable.MI(1) = TotMI;
OptimalCostTable.MI(2) = TotMI / 100 * mean(TradeDataTradeOpt.Price);
OptimalCostTable.MI(3) = TotMI / 100 * (TradeDataTradeOpt.Shares' * ...
 TradeDataTradeOpt.Price);

% Price appreciation
OptimalCostTable.PA(1) = TotPA;
OptimalCostTable.PA(2) = TotPA / 100 * mean(TradeDataTradeOpt.Price);
OptimalCostTable.PA(3) = TotPA / 100 * (TradeDataTradeOpt.Shares' * ...
 TradeDataTradeOpt.Price);

% Total cost
OptimalCostTable.TotalCost(1) = TotMI + TotPA;
OptimalCostTable.TotalCost(2) = (TotMI + TotPA) / 100 * mean(TradeDataTradeOpt.Price);
OptimalCostTable.TotalCost(3) = (TotMI + TotPA) / 100 * ...
 (TradeDataTradeOpt.Shares' * TradeDataTradeOpt.Price);

% Timing risk
OptimalCostTable.TR(1) = TotTR;
OptimalCostTable.TR(2) = TotTR / 100 * mean(TradeDataTradeOpt.Price);
OptimalCostTable.TR(3) = TotTR / 100 * ...
 (TradeDataTradeOpt.Shares' * TradeDataTradeOpt.Price);

 Create Basket Summary and Efficient Trading Frontier

3-85

Display the optimal costs for the basket. Format the display output to show cents and
dollars. Optimal costs are market impact, price appreciation, total cost, and timing risk.

format bank
OptimalCostTable

OptimalCostTable =

 3×5 table array

 CostUnits MI PA TotalCost TR
 _________________ ____________ ____ ____________ ____________

 'Basis Points' 38.30 0.00 38.30 26.57
 'Cents per Share' 14.88 0.00 14.88 10.32
 'Dollars' 171134479.73 0.00 171134479.73 118710304.48

Determine Risk Components in Basket

Calculate risk statistics. The marginal contribution to risk captures the risk of changing
one of the components in the basket, such as the number of shares. The risk contribution
is the risk for each trade in the basket.

% Portfolio Risk in Dollars
PortfolioRisk = sqrt(TradeDataTradeOpt.Shares' * CD * ...
 TradeDataTradeOpt.Shares);

% MCR and RC calculations
PortfolioRiskMCR = zeros(numberStocks,1);
PortfolioRiskRC =zeros(numberStocks,1);
SharesMCR = TradeDataTradeOpt.Shares;
SharesRC = TradeDataTradeOpt.Shares;
for i = 1:numberStocks
 SharesMCR(i) = TradeDataTradeOpt.Shares(i) * 0.90;
 SharesRC(i) = 0;
 PortfolioRiskMCR(i) = sqrt(SharesMCR' * CD * SharesMCR);
 PortfolioRiskRC(i) = sqrt(SharesRC' * CD * SharesRC);
end
TradeDataTradeOpt.MCR = PortfolioRisk ./ PortfolioRiskMCR - 1;
TradeDataTradeOpt.RC = PortfolioRisk ./ PortfolioRiskRC - 1;

Display the side, symbol, and number of shares for the safest trade in the basket using
the risk contribution.

minrisk = min(TradeDataTradeOpt.RC);
for i = 1:25
 if TradeDataTradeOpt.RC(i) == minrisk
 idx = i;

3 Transaction Cost Analysis

3-86

 end
end
[TradeDataTradeOpt.Side(idx) TradeDataTradeOpt.Symbol(idx) ...
 TradeDataTradeOpt.Shares(idx)]

ans =

 1×3 cell array

 'B' 'ABC' [100000]

The buy order of 100,000 shares of stock ABC contributes the most overall portfolio risk.

Create Basket Report Summary

Create a table for the basket report summary.
% Get sector identifiers
uniqueSectors = unique(TradeDataTradeOpt.Sector);
numSectors = size(uniqueSectors,1);
numGroups = 14 + size(uniqueSectors,1); % Using 14 categories plus number of sectors

% Preallocate BasketReport table
BasketReport = table;
BasketReport.BasketCategory = cell(numGroups,1);
BasketReport.Number = zeros(numGroups,1);
BasketReport.Weight = zeros(numGroups,1);
BasketReport.MI = zeros(numGroups,1);
BasketReport.TR = zeros(numGroups,1);
BasketReport.POV = zeros(numGroups,1);
BasketReport.TradeTime = zeros(numGroups,1);
BasketReport.PctADV = zeros(numGroups,1);
BasketReport.Price = zeros(numGroups,1);
BasketReport.Volatility = zeros(numGroups,1);
BasketReport.Risk = zeros(numGroups,1);
BasketReport.RC = zeros(numGroups,1);
BasketReport.MCR = zeros(numGroups,1);
BasketReport.Beta = zeros(numGroups,1);
BasketReport.LF = zeros(numGroups,1);
BasketReport.TotalValue = zeros(numGroups,1);
BasketReport.BuyValue = zeros(numGroups,1);
BasketReport.SellValue = zeros(numGroups,1);
BasketReport.NetValue = zeros(numGroups,1);
BasketReport.Shares = zeros(numGroups,1);
BasketReport.BuyShares = zeros(numGroups,1);
BasketReport.SellShares = zeros(numGroups,1);

Calculate the basket report summary.

Divide the trades in the basket into these categories:

• Total — All trades in basket
• Buy — Buy trades

 Create Basket Summary and Efficient Trading Frontier

3-87

• Cover — Buy trades that cover a short position
• Sell — Sell trades
• Short — Short trades
• <=1% — Trades that have percentage of average daily volume less than or equal to 1%
• 1%-3% — Trades that have percentage of average daily volume between 1% and 3%
• 3%-5% — Trades that have percentage of average daily volume between 3% and 5%
• 5%-10% — Trades that have percentage of average daily volume between 5% and 10%
• 10%-20% — Trades that have percentage of average daily volume between 10% and

20%
• >20% — Trades that have percentage of average daily volume greater than 20%
• LC — Large-capitalization stock trades
• MC — Mid-capitalization stock trades
• SC — Small-capitalization stock trades
• Consumer Discretionary — Trades in the consumer discretionary industry
• Consumer Staples — Trades in the consumer staples industry
• Energy — Trades in the energy industry
• Financials — Trades in the financial industry
• Health Care — Trades in the health care industry
• Industrials — Trades in the industrial industry
• Information Technology — Trades in the information technology industry
• Materials — Trades in the materials industry
• Telecommunication Services — Trades in the telecommunication services

industry
• Utilities — Trades in the utilities industry

For stocks in each category, calculate these values:

• Weight — Total trade value weight
• MI — Weighted average market-impact cost
• TR — Timing risk
• POV — Weighted average percentage of volume rate
• TradeTime — Weighted average trade time to complete the order

3 Transaction Cost Analysis

3-88

• PctADV — Weighted average order size (measured as percentage of average daily
volume)

• Price — Weighted average share price
• Volatility — Weighted average volatility
• Risk — Portfolio risk
• RC — Risk contribution to the overall portfolio risk (shows the amount of risk that an

order contributes to the basket)
• MCR — Marginal contribution to risk (shows the amount of risk that 10% of shares in

the order contribute to the basket)
• Beta — Weighted average beta
• LF — Weighted average liquidity factor
• TotalValue — Total trade value
• BuyValue — Total trade value of the buy transactions
• SellValue — Total trade value of the sell transactions
• NetValue — Difference between total trade value of the buy and sell transactions
• Shares — Number of shares
• BuyShares — Number of shares to buy
• SellShares — Number of shares to sell
% Fill table, indRecord is index of matching TradeData rows
j = 0;
for i = 1:24

 switch i

 % Total
 case 1

 indRecord = true(numberStocks,1);
 BasketReport.BasketCategory(i) = {'Total'};

 % Side
 case 2
 indRecord = strcmp(TradeDataTradeOpt.Side,'B') | ...
 strcmp(TradeDataTradeOpt.Side,'Buy');
 BasketReport.BasketCategory(i) = {'Buy'};

 case 3
 indRecord = strcmp(TradeDataTradeOpt.Side,'C') | ...
 strcmp(TradeDataTradeOpt.Side,'Cover');
 BasketReport.BasketCategory(i) = {'Cover'};

 case 4
 indRecord = strcmp(TradeDataTradeOpt.Side,'S') | ...
 strcmp(TradeDataTradeOpt.Side,'Sell');

 Create Basket Summary and Efficient Trading Frontier

3-89

 BasketReport.BasketCategory(i) = {'Sell'};

 case 5
 indRecord = strcmp(TradeDataTradeOpt.Side,'SS') | ...
 strcmp(TradeDataTradeOpt.Side,'Short') | ...
 strcmp(TradeDataTradeOpt.Side,'Sell Short');
 BasketReport.BasketCategory(i) = {'Short'};

 % Liquidity Category
 case 6

 % Percentage of average daily volume is less than 1 %
 indRecord = (TradeDataTradeOpt.PctADV <= 0.01);
 BasketReport.BasketCategory(i) = {'<=1%'};

 case 7

 % Percentage of average daily volume is between 1 and 3 %
 indRecord = (TradeDataTradeOpt.PctADV > 0.01 & ...
 TradeDataTradeOpt.PctADV <= 0.03);
 BasketReport.BasketCategory(i) = {'1%-3%'};

 case 8

 % Percentage of average daily volume is between 3 and 5 %
 indRecord = (TradeDataTradeOpt.PctADV > 0.03 & ...
 TradeDataTradeOpt.PctADV <= 0.05);
 BasketReport.BasketCategory(i) = {'3%-5%'};

 case 9

 % Percentage of average daily volume is between 5 and 10 %
 indRecord = (TradeDataTradeOpt.PctADV > 0.05 & ...
 TradeDataTradeOpt.PctADV <= 0.10);
 BasketReport.BasketCategory(i) = {'5%-10%'};

 case 10

 % Percentage of average daily volume is between 10 and 20 %
 indRecord = (TradeDataTradeOpt.PctADV > 0.10 & ...
 TradeDataTradeOpt.PctADV <= 0.20);
 BasketReport.BasketCategory(i) = {'10%-20%'};

 case 11

 % Percentage of average daily volume is greater than 20 %
 indRecord = (TradeDataTradeOpt.PctADV > 0.20);
 BasketReport.BasketCategory(i) = {'>20%'};

 % Market cap
 case 12

 % Large cap
 indRecord = (TradeDataTradeOpt.MktCap > 10000000000);
 BasketReport.BasketCategory(i) = {'LC'};

 case 13

 % Mid cap
 indRecord = (TradeDataTradeOpt.MktCap > 1000000000 & ...
 TradeDataTradeOpt.MktCap <= 10000000000);
 BasketReport.BasketCategory(i) = {'MC'};

3 Transaction Cost Analysis

3-90

 case 14

 % Small cap
 indRecord = (TradeDataTradeOpt.MktCap <= 1000000000);
 BasketReport.BasketCategory(i)={'SC'};

 % Sectors
 % Description of basket category
 case {15, 16, 17, 18, 19, 20, 21, 22, 23, 24}
 j = j + 1;
 if j <= numSectors
 indRecord = strcmp(TradeDataTradeOpt.Sector,uniqueSectors(j));
 BasketReport.BasketCategory(i) = uniqueSectors(j);
 end

 end

 % Get subset of TradeData
 TD = TradeDataTradeOpt(indRecord,:);

 if ~isempty(TD)

 % Covariance Matrix in $/Shares^2
 CC2 = CC(indRecord,indRecord); %Trading Period Covariance Matrix in $/Shares^2
 C2 = C1(indRecord,indRecord); %Annualized Covariance Matrix in $/Shares^2
 RR = R(indRecord,:); %Residuals for Stocks in group

 % Basket Summary Calculations
 Weight2 = TD.Value / sum(TD.Value);

 % Side
 I_Buy = (TD.SideIndicator == 1);
 I_Sell = (TD.SideIndicator == -1);

 % Fill basket report table
 BasketReport.Number(i) = size(TD,1); % Number of records that match criteria
 BasketReport.Weight(i) = sum(TD.Value)/PortfolioValue; % Weight of assets in criteria
 BasketReport.MI(i) = Weight2' * TD.MI; % Market impact of assets
 BasketReport.TR(i) = sqrt(trace(RR'*CC2*RR)) / sum(TD.Value) * 10000; % Timing risk of assets
 BasketReport.POV(i) = Weight2' * TD.POV; % POV of assets
 BasketReport.TradeTime(i) = Weight2' * TD.TradeTime; % Tradetime of assets
 BasketReport.PctADV(i) = Weight2' * TD.PctADV; % Percentage of ADV
 BasketReport.Price(i) = Weight2' * TD.Price; % Total price of assets
 BasketReport.Volatility(i) = Weight2' * TD.Volatility; % Volatility
 BasketReport.Risk(i) = sqrt(TD.Shares' * C2 * TD.Shares) / ...
 sum(TD.Value); % Risk value

 % RC and MCR
 Shares2 = TradeDataTradeOpt.Shares;
 Shares3 = TradeDataTradeOpt.Shares;
 Shares2(indRecord) = 0;
 Shares3(indRecord) = Shares3(indRecord) * 0.90;

 if sum(Shares2) > 0
 BasketReport.RC(i) = PortfolioRisk / sqrt(Shares2' * CD * Shares2) - 1;
 else
 BasketReport.RC(i) = 0;
 end
 BasketReport.MCR(i) = PortfolioRisk / sqrt(Shares3' * CD * Shares3) - 1;

 % Beta value, liquidity factor and total value

 Create Basket Summary and Efficient Trading Frontier

3-91

 BasketReport.Beta(i) = sum(Weight2 .* TD.SideIndicator .* TD.Beta);
 BasketReport.LF(i) = Weight2' * TD.LF;
 BasketReport.TotalValue(i) = sum(TD.Value);

 % Calculate buy share values
 if sum(I_Buy) > 0
 BasketReport.BuyValue(i) = sum(TD.Value(I_Buy));
 BasketReport.BuyShares(i) = sum(TD.Shares(I_Buy));
 else
 BasketReport.BuyValue(i) = 0;
 BasketReport.BuyShares(i) = 0;
 end

 % Calculate sell share values
 if sum(I_Sell) > 0
 BasketReport.SellValue(i) = sum(TD.Value(I_Sell));
 BasketReport.SellShares(i) = sum(TD.Shares(I_Sell));
 else
 BasketReport.SellValue(i) = 0;
 BasketReport.SellShares(i) = 0;
 end

 % Calculate net value of criteria and number of shares
 BasketReport.NetValue(i) = BasketReport.BuyValue(i) - ...
 BasketReport.SellValue(i);
 BasketReport.Shares(i) = sum(TD.Shares);

 end
end

% Remove rows with no stocks
indRecord = (BasketReport.Number > 0);
BasketReport = BasketReport(indRecord,:);

Display market capitalization by volatility as a pie chart.

pie(BasketReport.Volatility(8:10),BasketReport.BasketCategory(8:10))
title('Market Capitalization by Volatility')

3 Transaction Cost Analysis

3-92

Create Principal Bid Summary

Determine the efficient trading frontier by time. Use different trade time scenarios.
Estimate trading costs for price appreciation, market impact, and timing risk for each
scenario.
ScenarioTime = [0.10;0.25;0.50;0.75;1.0;1.50;2.0;2.5;3.0;3.5;4.0;4.5;5.0];
numScenarios = size(ScenarioTime,1);
ETFCosts = zeros(numScenarios,5);

 Create Basket Summary and Efficient Trading Frontier

3-93

TableVariableNames = TradeDataTradeOpt.Properties.VariableNames;
if sum(strcmp(TableVariableNames,'DeltaP')) > 0
 DeltaP = TradeDataTradeOpt.DeltaP;
elseif sum(strcmp(TableVariableNames,'Alpha_bp')) > 0
 DeltaP = TradeDataTradeOpt.Alpha_bp;
else
 DeltaP = zeros(NumberStocks,1);
end

% Convert DeltaP from basis points per day to cents/share per period
DeltaP = DeltaP / 1000 .* TradeDataTradeOpt.Price / totalNumberPeriods;

for i = 1:numScenarios

 TradeTime = ScenarioTime(i);
 TradeDataTradeOpt.POV = TradeDataTradeOpt.Shares ./ ...
 (TradeDataTradeOpt.Shares + TradeTime .* TradeDataTradeOpt.ADV);

 % Price Appreciations in Dollars
 PA = 1/2 * TradeDataTradeOpt.Shares .* DeltaP .* TradeTime;
 TotPA = sum(PA) / (TradeDataTradeOpt.Shares' * ...
 TradeDataTradeOpt.Price) .* 10000; % bp
 PA = PA ./ (TradeDataTradeOpt.Shares .* ...
 TradeDataTradeOpt.Price) * 10000; % bp

 % Market Impact in Dollars
 MI = marketImpact(k,TradeDataTradeOpt) .* TradeDataTradeOpt.Shares .* ...
 TradeDataTradeOpt.Price ./ 10000; %dollars;
 TotMI = sum(MI) / (TradeDataTradeOpt.Shares' * ...
 TradeDataTradeOpt.Price) .* 10000; % bp
 MI = MI ./ (TradeDataTradeOpt.Shares .* ...
 TradeDataTradeOpt.Price) * 10000; % bp

 % Timing Risk in Dollars
 TotTR = sqrt(1/3 * TradeDataTradeOpt.Shares' * ...
 (CD * TradeTime) * TradeDataTradeOpt.Shares) / ...
 (TradeDataTradeOpt.Shares' * TradeDataTradeOpt.Price) * 10000;

 % Total Cost Dollars
 TotTC = (TotMI + TotPA);

 % ETF Cost Table
 ETFCosts(i,1) = TradeTime;
 ETFCosts(i,2) = TotMI;
 ETFCosts(i,3) = TotPA;
 ETFCosts(i,4) = TotTC;
 ETFCosts(i,5) = TotTR;

end

% Save as Table
ETFCosts = table(ETFCosts(:,1),ETFCosts(:,2),ETFCosts(:,3),ETFCosts(:,4), ...
 ETFCosts(:,5),'VariableNames',{'Days','MI_bp','PA_bp','TotalCost_bp', ...
 'TR_bp'});

Determine the trade time with the lowest total cost.

mintotcost = min(ETFCosts.TotalCost_bp);
for i = 1:numScenarios
 if(ETFCosts.TotalCost_bp(i) == mintotcost)

3 Transaction Cost Analysis

3-94

 scenario = ETFCosts.Days(i);
 end
end
scenario

scenario =

 5

For details about the preceding calculations, contact the Kissell Research Group.

References
[1] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.

Cambridge, MA: Elsevier/Academic Press, 2013.

[2] Malamut, Roberto. “Multi-Period Optimization Techniques for Trade Scheduling.”
Presentation at the QWAFAFEW New York Conference, April 2002.

[3] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

See Also
krg | liquidityFactor | marketImpact

More About
• “Optimize Trade Schedule Trading Strategy for Basket” on page 3-79
• “Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23
• “Liquidate Dollar Value from Portfolio” on page 3-56
• “Kissell Research Group Data Sets” on page 3-9

 See Also

3-95

Sample Code for Workflows

• “Listen for X_TRADER Price Updates” on page 4-2
• “Listen for X_TRADER Price Market Depth Updates” on page 4-4
• “Submit X_TRADER Orders” on page 4-8
• “Create and Manage a Bloomberg EMSX Order” on page 4-12
• “Create and Manage a Bloomberg EMSX Route” on page 4-17
• “Manage a Bloomberg EMSX Order and Route” on page 4-22
• “Create and Manage an Interactive Brokers Order” on page 4-27
• “Request Interactive Brokers Historical Data” on page 4-33
• “Request Interactive Brokers Real-Time Data” on page 4-36
• “Create Interactive Brokers Combination Order” on page 4-40
• “Create CQG Orders” on page 4-46
• “Request CQG Historical Data” on page 4-52
• “Request CQG Intraday Tick Data” on page 4-55
• “Request CQG Real-Time Data” on page 4-59

4

Listen for X_TRADER Price Updates
This example shows how to connect to X_TRADER and listen for price update event data.

Connect to X_TRADER

X = xtrdr;

Create an Event Notifier

The event notifier is the X_TRADER mechanism that lets you define MATLAB functions to
use as callbacks for specific events.

createNotifier(X)

Create an Instrument

Create an instrument and attach it to the notifier.

createInstrument(X,'Exchange','CME','Product','2F',...
 'ProdType','Future','Contract','Aug13',...
 'Alias','PriceInstrument1')
X.InstrNotify(1).AttachInstrument(X.Instrument(1))

Define Events

Assign callbacks for validating or invalidating an instrument, and for handling data
updates for a previously validated instrument.

registerevent(X.InstrNotify(1),{'OnNotifyFound',...
 @(varargin)ttinstrumentfound(varargin{:})})
registerevent(X.InstrNotify(1),{'OnNotifyNotFound',...
 @(varargin)ttinstrumentnotfound(varargin{:})})
registerevent(X.InstrNotify(1),{'OnNotifyUpdate',...
 @(varargin)ttinstrumentupdate(varargin{:})})

Monitor Events

Set the update filter to monitor the desired fields. In this example, events are monitored
for updates to last price, last quantity, previous last quantity, and a change in prices.
Listen for this event data.

X.InstrNotify(1).UpdateFilter = 'Last$,LastQty$,~LastQty$,Change$';
X.Instrument(1).Open(0)

4 Sample Code for Workflows

4-2

The last command tells X_TRADER to start monitoring the attached instruments using the
specified event settings.

Close the Connection

close(X)

See Also
close | createInstrument | createNotifier | xtrdr

Related Examples
• “Create an Order Using X_TRADER” on page 1-17
• “Listen for X_TRADER Price Market Depth Updates” on page 4-4
• “Submit X_TRADER Orders” on page 4-8

More About
• “Workflows for Trading Technologies X_TRADER” on page 2-4

 See Also

4-3

Listen for X_TRADER Price Market Depth Updates
This example shows how to connect to X_TRADER and turn on event handling for level-
two market data (for example, bid and ask orders in the market for an instrument) and
then create a figure window to display the depth data.

Connect to X_TRADER

X = xtrdr;

Create an Event Notifier

Create an event notifier and enable depth updates. The event notifier is the X_TRADER
mechanism lets you define MATLAB functions to use as callbacks for specific events.

createNotifier(X)
X.InstrNotify(1).EnableDepthUpdates = 1;

Create an Instrument
createInstrument(X,'Exchange','CME','Product','2F','ProdType','Future',...
 'Contract','Aug13','Alias','PriceInstrumentDepthUpdate')

Attach an Instrument to a Notifier

Assign one or more notifiers to an instrument. A notifier can have one or more
instruments attached to it.

X.InstrNotify(1).AttachInstrument(X.Instrument(1))

Define Events

Assign callbacks for validating or invalidating an instrument, and updating the example
order book window.

registerevent(X.InstrNotify(1),{'OnNotifyFound',...
 @ttinstrumentfound})
registerevent(X.InstrNotify(1),{'OnNotifyNotFound',...
 @ttinstrumentnotfound})
registerevent(X.InstrNotify(1),{'OnNotifyDepthData',...
 @ttinstrumentdepthupdate})

Set Up the Figure Window

Set up the figure window to display depth data.

4 Sample Code for Workflows

4-4

f = figure('Numbertitle','off','Tag','TTPriceUpdateDepthFigure',...
 'Name',['Order Book - ' X.Instrument(1).Alias])
pos = f.Position;
f.Position = [pos(1) pos(2) 360 315];
f.Resize = 'off';

Create Controls

Create controls for the last price data.

bspc = 5;
bwid = 80;
bhgt = 20;

uicontrol('Style','text','String','Exchange',...
 'Position',[bspc 4*bspc+3*bhgt bwid bhgt])
uicontrol('Style','text','String','Product',...
 'Position',[2*bspc+bwid 4*bspc+3*bhgt bwid bhgt])
uicontrol('Style','text','String','Type',...
 'Position',[3*bspc+2*bwid 4*bspc+3*bhgt bwid bhgt])
uicontrol('Style','text','String','Contract',...
 'Position',[4*bspc+3*bwid 4*bspc+3*bhgt bwid bhgt])
ui.Exchange = uicontrol('Style','text','Tag','',...
 'Position',[bspc 3*bspc+2*bhgt bwid bhgt]);
ui.Product = uicontrol('Style','text','Tag','',...
 'Position',[2*bspc+bwid 3*bspc+2*bhgt bwid bhgt]);
ui.Type = uicontrol('Style','text','Tag','',...
 'Position',[3*bspc+2*bwid 3*bspc+2*bhgt bwid bhgt]);
ui.Contract = uicontrol('Style','text','Tag','',...
 'Position',[4*bspc+3*bwid 3*bspc+2*bhgt bwid bhgt]);
uicontrol('Style','text','String','Last Price',...
 'Position',[bspc 2*bspc+bhgt bwid bhgt])
uicontrol('Style','text','String','Last Qty',...
 'Position',[2*bspc+bwid 2*bspc+bhgt bwid bhgt])
uicontrol('Style','text','String','Change',...
 'Position',[3*bspc+2*bwid 2*bspc+bhgt bwid bhgt])
ui.Last = uicontrol('Style','text','Tag','',...
 'Position',[bspc bspc bwid bhgt]);
ui.Quantity = uicontrol('Style','text','Tag','',...
 'Position',[2*bspc+bwid bspc bwid bhgt]);
ui.Change = uicontrol('Style','text','Tag','',...
 'Position',[3*bspc+2*bwid bspc bwid bhgt]);

 Listen for X_TRADER Price Market Depth Updates

4-5

Create a Table

Create a table containing order information.

data = {' '};
data = data(ones(10,4));
uibook = uitable('Data',data,'ColumnName',...
 {'Bid','Bid Size','Ask','Ask Size'},...
 'Position',[5 105 350 205]);

Store Data
setappdata(0,'TTOrderBookHandle',uibook)
setappdata(0,'TTOrderBookUIData',ui)

Listen for Event Data

Listen for event data with depth updates enabled.

X.Instrument(1).Open(1)

The last command instructs X_TRADER to start monitoring the attached instruments
using the specified event settings.

4 Sample Code for Workflows

4-6

Close the Connection

close(X)

See Also
close | createInstrument | createNotifier | getData | xtrdr

Related Examples
• “Create an Order Using X_TRADER” on page 1-17
• “Listen for X_TRADER Price Updates” on page 4-2
• “Submit X_TRADER Orders” on page 4-8

More About
• “Workflows for Trading Technologies X_TRADER” on page 2-4

 See Also

4-7

Submit X_TRADER Orders
This example shows how to connect to X_TRADER and submit orders.

Connect to X_TRADER

X = xtrdr;

Create an Instrument

createInstrument(X,'Exchange','CME','Product','2F',...
 'ProdType','Future','Contract','Aug13',...
 'Alias','SubmitOrderInstrument1')

Register Event Handlers

Register event handlers for the order server. The callback ttorderserverstatus is
assigned to the event OnExchangeStateUpdate to verify that the requested
instrument’s exchange order server is running. Otherwise, no orders can be submitted.

sExchange = X.Instrument.Exchange;
registerevent(X.Gate,{'OnExchangeStateUpdate',...
 @(varargin)ttorderserverstatus(varargin{:},sExchange)})

Create an Order Set

The OrderSet object sends orders to X_TRADER.

Set properties of the OrderSet object and detail the level of the order status events.
Enable order update and reject (failure) events so you can assign callbacks to handle
these conditions.

createOrderSet(X)
X.OrderSet(1).EnableOrderRejectData = 1;
X.OrderSet(1).EnableOrderUpdateData = 1;
X.OrderSet(1).OrderStatusNotifyMode = 'ORD_NOTIFY_NORMAL';

Set Position Limit Checks

Set whether the order set checks self-imposed position limits when submitting an order.

X.OrderSet(1).Set('NetLimits',false)

4 Sample Code for Workflows

4-8

Set a Callback Function

Set a callback to handle the OnOrderFilled events. Each time an order is filled (or
partially filled), this callback is invoked.

registerevent(X.OrderSet(1),{'OnOrderFilled',...
 @(varargin)ttorderevent(varargin{:},X)})

Enable Order Submission

You must first enable order submission before you can submit orders to X_TRADER.

X.OrderSet(1).Open(1)

Build an Order Profile

Build an order profile using an existing instrument. The order profile contains the settings
that define a submitted order. The valid Set parameters are shown:

orderProfile = createOrderProfile(X);
orderProfile.Instrument = X.Instrument(1);
orderProfile.Customer = '<Default>';

Sample: Create a Market Order

Create a market order to buy 100 shares.

orderProfile.Set('BuySell','Buy')
orderProfile.Set('Qty',100)
orderProfile.Set('OrderType','M')

Sample: Create a Limit Order

Create a limit order by setting the OrderType and limit order price.

orderProfile.Set('OrderType','L')
orderProfile.Set('Limit$','127000')

Sample: Create a Stop Market Order

Create a stop market order and set the order restriction to a stop order and a stop price.

orderProfile.Set('OrderType','M')
orderProfile.Set('OrderRestr','S')
orderProfile.Set('Stop$','129800')

 Submit X_TRADER Orders

4-9

Sample: Create a Stop Limit Order

Create a stop limit order and set the order restriction, type, limit price, and stop price.

orderProfile.Set('OrderType','L')
orderProfile.Set('OrderRestr','S')
orderProfile.Set('Limit$','128000')
orderProfile.Set('Stop$','127500')

Check the Order Server Status

Check the order server status before submitting the order and add a counter so the
example doesn’t delay.

nCounter = 1;
while ~exist('bServerUp','var') && nCounter < 20
 pause(1)
 nCounter = nCounter + 1;
end

Verify the Order Server Availability

Verify that the exchange’s order server in question is available before submitting the
order.

if exist('bServerUp','var') && bServerUp
 submittedQuantity = X.OrderSet(1).SendOrder(orderProfile);
 disp(['Quantity Sent: ' num2str(submittedQuantity)])
else
 disp('Order Server is down. Unable to submit order')
end

Close the Connection

close(X)

See Also
close | createInstrument | createOrderProfile | createOrderSet | xtrdr

Related Examples
• “Create an Order Using X_TRADER” on page 1-17

4 Sample Code for Workflows

4-10

• “Listen for X_TRADER Price Updates” on page 4-2
• “Listen for X_TRADER Price Market Depth Updates” on page 4-4

More About
• “Workflows for Trading Technologies X_TRADER” on page 2-4

 See Also

4-11

Create and Manage a Bloomberg EMSX Order
This example shows how to connect to Bloomberg EMSX, create an order, and interact
with the order.

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

Connect to Bloomberg EMSX

Connect to the Bloomberg EMSX test service. Display the current event queue contents
using processEvent.

c = emsx('//blp/emapisvc_beta');
processEvent(c)

c =

 emsx with properties:

 Session: [1x1 com.bloomberglp.blpapi.Session]
 Service: [1x1 com.bloomberglp.blpapi.impl.aQ]
 Ipaddress: 'localhost'
 Port: 8194

SessionConnectionUp = {
 server = localhost/127.0.0.1:8194
}

SessionStarted = {
}

ServiceOpened = {
 serviceName = //blp/emapisvc_beta
}

MATLAB returns c as the connection to the Bloomberg EMSX test service with the
following:

• Bloomberg EMSX session object
• Bloomberg EMSX service object
• IP address of the machine running the Bloomberg EMSX test service

4 Sample Code for Workflows

4-12

• Port number of the machine running the Bloomberg EMSX test service

processEvent displays events associated with connecting to Bloomberg EMSX.

Set Up the Order Subscription

Subscribe to order events using the Bloomberg EMSX connection c associated with these
Bloomberg EMSX fields.

fields = {'EMSX_TICKER','EMSX_AMOUNT','EMSX_FILL'};

[events,subs] = orders(c,fields)

events =

 MSG_TYPE: {'E'}
 MSG_SUB_TYPE: {'O'}
 EVENT_STATUS: 4
 ...

subs =

com.bloomberglp.blpapi.SubscriptionList@4bc3dc78

events contains fields for the events associated with the existing Bloomberg EMSX
orders. subs contains the Bloomberg EMSX subscription list object.

Create the Order

Create an order request structure order for a buy market order of 400 shares of IBM.
Specify the broker as EFIX, use any hand instruction, and set the time in force to DAY.

order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_SIDE = 'BUY';
order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(400);
order.EMSX_BROKER = 'EFIX';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_TIF = 'DAY';

Create the order using the Bloomberg EMSX connection c and the order request
structure order.

events = createOrder(c,order)

 Create and Manage a Bloomberg EMSX Order

4-13

order_events =

 EMSX_SEQUENCE: 354646
 MESSAGE: 'Order created'

The default event handler processes the events associated with creating the order.
createOrder returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX message

Modify the Order

Define the structure modorder that contains these fields:

• Bloomberg EMSX order sequence number EMSX_SEQUENCE
• Bloomberg EMSX ticker symbol EMSX_TICKER
• Bloomberg EMSX number of shares EMSX_AMOUNT

This code modifies order number 354646 for 200 shares of IBM. Convert the numbers to
32-bit signed integers using int32.

modorder.EMSX_SEQUENCE = int32(354646);
modorder.EMSX_TICKER = 'IBM';
modorder.EMSX_AMOUNT = int32(200);

Modify the order using the Bloomberg EMSX connection c and modify order structure
modorder.

events = modifyOrder(c,modorder)

events =

 EMSX_SEQUENCE: 354646
 MESSAGE: 'Order Modified'

The default event handler processes the events associated with modifying an order.
modifyOrder returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX message

4 Sample Code for Workflows

4-14

Delete the Order

Define the structure ordernum that contains the order sequence number 354646 for the
order to delete. Delete the order using the Bloomberg EMSX connection c and the delete
order number structure ordernum.

ordernum.EMSX_SEQUENCE = 354646;

events = deleteOrder(c,ordernum)

events =

 STATUS: '0'
 MESSAGE: 'Order deleted'

The default event handler processes the events associated with deleting an order.
deleteOrder returns events as a structure that contains these fields:

• Bloomberg EMSX status
• Bloomberg EMSX message

Stop the Order Subscription

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX Connection

close(c)

See Also
close | createOrder | deleteOrder | emsx | modifyOrder | orders

Related Examples
• “Create an Order Using Bloomberg EMSX” on page 1-14
• “Create and Manage a Bloomberg EMSX Route” on page 4-17
• “Manage a Bloomberg EMSX Order and Route” on page 4-22

 See Also

4-15

More About
• “Workflow for Bloomberg EMSX” on page 2-2

External Websites
• EMSX API Programmers Guide

4 Sample Code for Workflows

4-16

https://emsx-api-doc.readthedocs.io/en/latest/index.html

Create and Manage a Bloomberg EMSX Route
This example shows how to connect to Bloomberg EMSX, set up a route subscription,
create and route an order, and interact with the route.

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

Connect to Bloomberg EMSX

Connect to the Bloomberg EMSX test service. Display the current event queue contents
using processEvent.

c = emsx('//blp/emapisvc_beta');
processEvent(c)

c =

 emsx with properties:

 Session: [1x1 com.bloomberglp.blpapi.Session]
 Service: [1x1 com.bloomberglp.blpapi.impl.aQ]
 Ipaddress: 'localhost'
 Port: 8194

SessionConnectionUp = {
 server = localhost/127.0.0.1:8194
}

SessionStarted = {
}

ServiceOpened = {
 serviceName = //blp/emapisvc_beta
}

MATLAB returns c as the connection to the Bloomberg EMSX test service with the
following:

• Bloomberg EMSX session object
• Bloomberg EMSX service object
• IP address of the machine running the Bloomberg EMSX test service

 Create and Manage a Bloomberg EMSX Route

4-17

• Port number of the machine running the Bloomberg EMSX test service

processEvent displays events associated with connecting to Bloomberg EMSX.

Set Up the Route Subscription

Set up the route subscription for Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection c. Return the status for existing
routes.

fields = {'EMSX_BROKER','EMSX_WORKING'};

[events,subs] = routes(c,fields)

events =

 MSG_TYPE: {5x1 cell}
 MSG_SUB_TYPE: {5x1 cell}
 EVENT_STATUS: [5x1 int32]
 ...

subs =

com.bloomberglp.blpapi.SubscriptionList@463b9287

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Create and Route the Order

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Create and route the order using the Bloomberg EMSX connection c and the order
request structure order.

4 Sample Code for Workflows

4-18

events = createOrderAndRoute(c,order)

events =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order created and routed'

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Modify the Route

Define the modroute structure that contains these fields:

• Bloomberg EMSX order sequence number EMSX_SEQUENCE
• Bloomberg EMSX ticker symbol EMSX_TICKER
• Bloomberg EMSX number of shares EMSX_AMOUNT
• Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 50 shares of IBM for order sequence number 335877 and
route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(335877)
modroute.EMSX_TICKER = 'IBM';
modroute.EMSX_AMOUNT = int32(50);
modroute.EMSX_ROUTE_ID = int32(1);

Modify the route using the Bloomberg EMSX connection c and modify route request
modroute.

events = modifyRoute(c,modroute)

events =

 EMSX_SEQUENCE: 0
 EMSX_ROUTE_ID: 0
 MESSAGE: 'Route modified'

 Create and Manage a Bloomberg EMSX Route

4-19

The default event handler processes the events associated with modifying a route.
modifyRoute returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Delete the Modified Route

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE and the route number EMSX_ROUTE_ID associated with the modified
route.

routenum.EMSX_SEQUENCE = 0;
routenum.EMSX_ROUTE_ID = 0;

Delete the route using the Bloomberg EMSX connection c and delete route number
structure routenum.

events = deleteRoute(c,routenum)

events =

 STATUS: '1'
 MESSAGE: 'Route cancellation request sent to broker'

The default event handler processes the events associated with deleting a route.
deleteRoute returns events as a structure that contains these fields:

• Bloomberg EMSX status
• Bloomberg EMSX message

Stop the Route Subscription

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

4 Sample Code for Workflows

4-20

Close the Bloomberg EMSX Connection

close(c)

See Also
close | createOrderAndRoute | deleteRoute | emsx | modifyRoute | routeOrder |
routes

Related Examples
• “Create an Order Using Bloomberg EMSX” on page 1-14
• “Create and Manage a Bloomberg EMSX Order” on page 4-12
• “Manage a Bloomberg EMSX Order and Route” on page 4-22

More About
• “Workflow for Bloomberg EMSX” on page 2-2

External Websites
• EMSX API Programmers Guide

 See Also

4-21

https://emsx-api-doc.readthedocs.io/en/latest/index.html

Manage a Bloomberg EMSX Order and Route
This example shows how to connect to Bloomberg EMSX, set up an order and route
subscription, create and route an order, and interact with the route.

For details about Bloomberg EMSX, see the EMSX API Programmer’s Guide using the
WAPI <GO> option from the Bloomberg terminal.

Connect to Bloomberg EMSX

Connect to the Bloomberg EMSX test service. Display the current event queue contents
using processEvent.

c = emsx('//blp/emapisvc_beta');
processEvent(c)

c =

 emsx with properties:

 Session: [1x1 com.bloomberglp.blpapi.Session]
 Service: [1x1 com.bloomberglp.blpapi.impl.aQ]
 Ipaddress: 'localhost'
 Port: 8194

SessionConnectionUp = {
 server = localhost/127.0.0.1:8194
}

SessionStarted = {
}

ServiceOpened = {
 serviceName = //blp/emapisvc_beta
}

MATLAB returns c as the connection to the Bloomberg EMSX test service with the
following:

• Bloomberg EMSX session object
• Bloomberg EMSX service object
• IP address of the machine running the Bloomberg EMSX test service

4 Sample Code for Workflows

4-22

• Port number of the machine running the Bloomberg EMSX test service

processEvent displays events associated with connecting to Bloomberg EMSX.

Set Up the Order and Route Subscription

Subscribe to order events using the Bloomberg EMSX connection c associated with these
Bloomberg EMSX fields.

fields = {'EMSX_TICKER','EMSX_AMOUNT','EMSX_FILL'};

[events,osubs] = orders(c,fields)

events =

 MSG_TYPE: {'E'}
 MSG_SUB_TYPE: {'O'}
 EVENT_STATUS: 4
 ...

osubs =

com.bloomberglp.blpapi.SubscriptionList@4bc3dc78

events contains fields for the events associated with the existing Bloomberg EMSX
orders. osubs contains the Bloomberg EMSX subscription list object.

Subscribe to route events for the Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection c. Return the status for existing
routes.

fields = {'EMSX_BROKER','EMSX_WORKING'};

[events,rsubs] = routes(c,fields)

events =

 MSG_TYPE: {5x1 cell}
 MSG_SUB_TYPE: {5x1 cell}
 EVENT_STATUS: [5x1 int32]
 ...

rsubs =

com.bloomberglp.blpapi.SubscriptionList@463b9287

 Manage a Bloomberg EMSX Order and Route

4-23

events contains fields for the events currently in the event queue. rsubs contains the
Bloomberg EMSX subscription list object.

Create and Route the Order

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Create and route the order using the Bloomberg EMSX connection c and the order
request structure order.

events = createOrderAndRoute(c,order)

events =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order created and routed'

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Modify the Route

Define the modroute structure that contains these fields:

• Bloomberg EMSX order sequence number EMSX_SEQUENCE
• Bloomberg EMSX ticker symbol EMSX_TICKER

4 Sample Code for Workflows

4-24

• Bloomberg EMSX number of shares EMSX_AMOUNT
• Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 50 shares of IBM for order sequence number 335877 and
route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(335877)
modroute.EMSX_TICKER = 'IBM';
modroute.EMSX_AMOUNT = int32(50);
modroute.EMSX_ROUTE_ID = int32(1);

Modify the route using the Bloomberg EMSX connection c and modify route request
modroute.

events = modifyRoute(c,modroute)

events =

 EMSX_SEQUENCE: 0
 EMSX_ROUTE_ID: 0
 MESSAGE: 'Route modified'

The default event handler processes the events associated with modifying a route.
modifyRoute returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Delete the Route

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE_ID.

routenum.EMSX_SEQUENCE = 0;
routenum.EMSX_ROUTE_ID = 0;

Delete the route using the Bloomberg EMSX connection c and delete route number
structure routenum.

events = deleteRoute(c,routenum)

events =

 Manage a Bloomberg EMSX Order and Route

4-25

 STATUS: '1'
 MESSAGE: 'Route cancellation request sent to broker'

The default event handler processes the events associated with deleting a route.
deleteRoute returns events as a structure that contains these fields:

• Bloomberg EMSX status
• Bloomberg EMSX message

Stop the Order and Route Subscription

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX Connection

close(c)

See Also
close | createOrderAndRoute | deleteRoute | emsx | modifyRoute | orders |
routes

Related Examples
• “Create an Order Using Bloomberg EMSX” on page 1-14
• “Create and Manage a Bloomberg EMSX Order” on page 4-12
• “Create and Manage a Bloomberg EMSX Route” on page 4-17

More About
• “Workflow for Bloomberg EMSX” on page 2-2

External Websites
• EMSX API Programmers Guide

4 Sample Code for Workflows

4-26

https://emsx-api-doc.readthedocs.io/en/latest/index.html

Create and Manage an Interactive Brokers Order
This example shows how to connect to the IB Trader Workstation, request open order
data, create IB Trader Workstation IContract and IOrder objects, and execute the
order. For details about the IContract and IOrder objects, see Interactive Brokers API
Reference Guide.

This example uses the sample event handler function ibExampleOrderEventHandler
to populate an order blotter figure with Interactive Brokers order information. Use this
event handler or write a custom event handler function. For details, see “Writing and
Running Custom Event Handler Functions with Interactive Brokers” on page 1-28.

To access the code for this example, enter edit IBOrderWorkflow.m.

Connect to the IB Trader Workstation

Connect to the IB Trader Workstation and create connection ib using the local host and
port number 7496.

 ib = ibtws('',7496);

Create an Example Order Blotter

Create an example order blotter that the event handler populates.

This MATLAB code creates a MATLAB figure to contain the Interactive Brokers order
information.
f = findobj('Tag','IBOrderBlotter');
if isempty(f)
 f = figure('Tag','IBOrderBlotter','MenuBar','none', ...
 'NumberTitle','off','Name','IB Order Blotter')
 pos = f.Position;
 f.Position = [pos(1) pos(2) 687 335];
 colnames = {'Status','Filled','Remaining','Avg Fill Price','Id', ...
 'Parent Id','Last Fill Price','Client Id','Why Held'};
 data = cell(15,9);
 uitable(f,'Data',data,'RowName',[],'ColumnName',colnames, ...
 'Position',[10 30 677 300],'Tag','OrderDataTable')
 uicontrol('Style','text','Position',[10 5 592 20], ...
 'Tag','IBOrderMessage')
 uicontrol('Style','pushbutton','String','Close', ...
 'Callback','evalin(''base'',''close(ib);close(findobj(''''Tag'''',''''IBOrderBlotter''''));'')',...
 'Position',[607 5 80 20])
end

MATLAB displays the IB Order Blotter.

 Create and Manage an Interactive Brokers Order

4-27

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

Request Open Order Data

Request information for all open orders using only this client and the sample event
handler ibExampleOrderEventHandler.

o = orders(ib,true,@ibExampleOrderEventHandler);

o is an empty double because ibExampleOrderEventHandler displays the data for all
open orders in the IB Order Blotter.

4 Sample Code for Workflows

4-28

Create the IB Trader Workstation IContract and IOrder Objects

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

• XYZ symbol
• Stock security type
• Aggregate exchange
• Primary exchange
• USD currency

XYZ is a sample symbol name and EX is a sample primary exchange name. To create
orders for your security, substitute the symbol name in ibContract.symbol and
primary exchange name in ibContract.primaryExchange.

ibContract = ib.Handle.createContract;
ibContract.symbol = 'XYZ';
ibContract.secType = 'STK';
ibContract.exchange = 'SMART';
ibContract.primaryExchange = 'EX';
ibContract.currency = 'USD'

 Create and Manage an Interactive Brokers Order

4-29

ibContract =

 Interface.Tws_ActiveX_Control_module.IContract

Create the IB Trader Workstation IOrder object ibOrder for a buy market order for two
shares.

ibOrder = ib.Handle.createOrder;
ibOrder.action = 'BUY';
ibOrder.totalQuantity = 2;
ibOrder.orderType = 'MKT'

ibOrder =

 Interface.Tws_ActiveX_Control_module.IOrder

ibOrder contains the action, total quantity, and order type.

Create the Interactive Brokers Order

Obtain the next valid order identification number using IB Trader Workstation connection
ib.

id = orderid(ib);

Execute the buy market order for two shares using the unique order identifier id and
sample event handler ibExampleOrderEventHandler.

createOrder(ib,ibContract,ibOrder,id,@ibExampleOrderEventHandler)

MATLAB displays order information in the IB Order Blotter. The IB Order Blotter shows
the open order and the filled order.

4 Sample Code for Workflows

4-30

Cancel the Interactive Brokers Order
ib.Handle.cancelOrder(id)

After canceling the existing order, create an order by modifying the IB Trader Workstation
IOrder object ibOrder. Then, create the order by executing createOrder.

Cancel all open Interactive Brokers orders.

ib.Handle.reqGlobalCancel

This method cancels all open Interactive Brokers orders globally. The order is canceled
despite where it is created.

Close the Connection

Close the IB Trader Workstation connection ib.

close(ib)

See Also
close | createOrder | getdata | history | ibtws | orderid | orders | timeseries

 See Also

4-31

Related Examples
• “Create an Order Using IB Trader Workstation” on page 1-8
• “Create Interactive Brokers Combination Order” on page 4-40
• “Request Interactive Brokers Historical Data” on page 4-33
• “Request Interactive Brokers Real-Time Data” on page 4-36

More About
• “Workflow for Interactive Brokers” on page 2-6
• “Writing and Running Custom Event Handler Functions with Interactive Brokers” on

page 1-28

External Websites
• Interactive Brokers API Reference Guide

4 Sample Code for Workflows

4-32

https://www.interactivebrokers.com/en/software/api/api.htm

Request Interactive Brokers Historical Data
This example shows how to connect to the IB Trader Workstation, create an IB Trader
Workstation IContract object, and request historical data. For details about the
IContract object, see Interactive Brokers API Reference Guide. To access the code for
this example, enter edit IBHistoricalDataWorkflow.m.

Connect to the IB Trader Workstation and Create the IContract Object

Connect to the IB Trader Workstation and create connection ib using the local host and
port number 7496.

 ib = ibtws('',7496);

MATLAB returns ib as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX® object, the local host, and the port number that you choose.

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

• XYZ symbol
• Stock security type
• Aggregate exchange
• Primary exchange
• USD currency

XYZ is a sample symbol name and EX is a sample primary exchange name. To create
orders for your security, substitute the symbol name in ibContract.symbol and
primary exchange name in ibContract.primaryExchange.

ibContract = ib.Handle.createContract;
ibContract.symbol = 'XYZ';
ibContract.secType = 'STK';
ibContract.exchange = 'SMART';
ibContract.primaryExchange = 'EX';
ibContract.currency = 'USD'

ibContract =

 Interface.Tws_ActiveX_Control_module.IContract

 Request Interactive Brokers Historical Data

4-33

https://www.interactivebrokers.com/en/software/api/api.htm

Request Interactive Brokers Historical Data

Request the last 5 days of historical data using ibContract.

startdate = floor(now) - 5;
enddate = floor(now);

d = history(ib,ibContract,startdate,enddate)

d =

 Columns 1 through 5

 736308.00 751.83 755.85 743.83 749.46
 736309.00 742.69 745.71 736.75 738.20
 736312.00 743.08 748.73 724.17 748.48
 736313.00 752.50 758.08 744.43 750.45

 Columns 6 through 9

 12513.00 9107.00 751.28 0
 15984.00 11121.00 740.39 0
 17125.00 11355.00 736.61 0
 1935.00 2371.00 751.67 0

d contains the historical data for 5 days.

Each row of d contains historical data for 1 day. The columns in matrix d are:

• Numeric representation of a date
• Open price
• High price
• Low price
• Close price
• Volume
• Bar count
• Weighted average price
• Flag indicating if there are gaps in the bar

Close the Connection

Close the IB Trader Workstation connection ib.

4 Sample Code for Workflows

4-34

close(ib)

See Also
close | createOrder | getdata | history | ibtws | timeseries

Related Examples
• “Create an Order Using IB Trader Workstation” on page 1-8
• “Create Interactive Brokers Combination Order” on page 4-40
• “Create and Manage an Interactive Brokers Order” on page 4-27
• “Request Interactive Brokers Real-Time Data” on page 4-36

More About
• “Workflow for Interactive Brokers” on page 2-6

External Websites
• Interactive Brokers API Reference Guide

 See Also

4-35

https://www.interactivebrokers.com/en/software/api/api.htm

Request Interactive Brokers Real-Time Data
This example shows how to connect to the IB Trader Workstation, create IB Trader
Workstation IContract objects, and request real-time data. For details about the
IContract object, see Interactive Brokers API Reference Guide.

This example uses the sample event handler function
ibExampleRealtimeEventHandler to handle events associated with requesting real-
time data. Use this event handler or write a custom event handler function. For details,
see “Writing and Running Custom Event Handler Functions with Interactive Brokers” on
page 1-28.

Here, AAA, BBB, and DDDD are sample symbol names. EX is a sample primary exchange
name. To create orders for your securities, substitute symbol names in
ibContract.symbol and primary exchange names in ibContract.primaryExchange.

To access the code for this example, enter edit IBStreamingDataWorkflow.m.

Connect to the IB Trader Workstation and Create the Real-Time Data Display
Figure

Connect to the IB Trader Workstation and create connection ib using the local host and
port number 7496.

 ib = ibtws('',7496);

MATLAB returns ib as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX object, the local host, and the port number that you choose.

To display real-time data, create an example figure.

This MATLAB code creates a MATLAB figure to contain the Interactive Brokers real-time
data.
f = findobj('Tag','IBStreamingDataWorkflow');
if isempty(f)
 f = figure('Tag','IBStreamingDataWorkflow', ...
 'MenuBar','none','NumberTitle','off')
 pos = f.Position;
 f.Position = [pos(1) pos(2) pos(3)+37 109];
 colnames = {'Trade','Size','Bid','BidSize', ...
 'Ask','AskSize','Total Volume'};
 rownames = {'AAA','BBB','DDDD'};
 data = cell(3,6);
 uitable(f,'Data',data,'RowName',rownames, ...
 'ColumnName',colnames,'Position',[10 30 582 76], ...
 'Tag','SecurityDataTable')

4 Sample Code for Workflows

4-36

https://www.interactivebrokers.com/en/software/api/api.htm

 uicontrol('Style','text','Position',[10 5 497 20], ...
 'Tag','IBMessage')
 uicontrol('Style','pushbutton','String','Close', ...
 'Callback', ...
 'evalin(''base'',''close(ib);close(findobj(''''Tag'''',''''IBStreamingDataWorkflow''''));'')', ...
 'Position',[512 5 80 20])
end

MATLAB displays the empty figure.

Create IB Trader Workstation IContract Objects

Create the IB Trader Workstation IContract object for the first security. Here, this
object describes a security with these property values:

• AAA symbol
• Stock security type
• Aggregate exchange
• Primary exchange
• USD currency

ibContract1 = ib.Handle.createContract;
ibContract1.symbol = 'AAA';
ibContract1.secType = 'STK';
ibContract1.exchange = 'SMART';
ibContract1.primaryExchange = 'EX';
ibContract1.currency = 'USD';

Create the IB Trader Workstation IContract object for the second security symbol BBB.

ibContract2 = ib.Handle.createContract;
ibContract2.symbol = 'BBB';
ibContract2.secType = 'STK';
ibContract2.exchange = 'SMART';
ibContract2.primaryExchange = 'EX';
ibContract2.currency = 'USD';

 Request Interactive Brokers Real-Time Data

4-37

Create the IB Trader Workstation IContract object for the third security symbol DDDD.

ibContract3 = ib.Handle.createContract;
ibContract3.symbol = 'DDDD';
ibContract3.secType = 'STK';
ibContract3.exchange = 'SMART';
ibContract3.primaryExchange = 'EX';
ibContract3.currency = 'USD';

Display the data in the symbol property of ibContract1.

ibContract1.symbol

ans =
 AAA

Request real-time data for the three securities. Set f to 100 to retrieve the Option Volume
tick type. For details about other generic market data tick types, see Interactive Brokers
API Reference Guide. Use the sample event handler
ibExampleRealtimeEventHandler to process the real-time data events or write a
custom event handler function.
contracts = {ibContract1;ibContract2;ibContract3};
f = '100';

tickerID = realtime(ib,contracts,f,...
 @(varargin)ibExampleRealtimeEventHandler(varargin{:}));

MATLAB displays the figure populated with real-time data for stock symbols AAA, BBB,
and DDDD.

Close the Connection

Close the IB Trader Workstation connection ib.

4 Sample Code for Workflows

4-38

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

close(ib)

See Also
close | createOrder | getdata | history | ibtws | timeseries

Related Examples
• “Create an Order Using IB Trader Workstation” on page 1-8
• “Create Interactive Brokers Combination Order” on page 4-40
• “Create and Manage an Interactive Brokers Order” on page 4-27
• “Request Interactive Brokers Historical Data” on page 4-33

More About
• “Workflow for Interactive Brokers” on page 2-6
• “Writing and Running Custom Event Handler Functions with Interactive Brokers” on

page 1-28

External Websites
• Interactive Brokers API Reference Guide

 See Also

4-39

https://www.interactivebrokers.com/en/software/api/api.htm

Create Interactive Brokers Combination Order
This example shows how to connect to the IB Trader Workstation, create IB Trader
Workstation IContract and IComboLegList objects, and create a combination order
for a calendar spread. A calendar spread is one of many combination order strategies.
This strategy takes advantage of different stock option expiration dates. This example
creates a buy order on a calendar spread for Google®. For details about IContract
objects, IComboLegList objects, and combination orders, see Interactive Brokers API
Reference Guide.

This example uses the sample event handler function ibExampleEventHandler to
handle events associated with creating a combination order. Use this event handler or
write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-28.

To access the code for this example, enter edit IBCombinationOrder.m.

Connect to the IB Trader Workstation

Connect to the IB Trader Workstation and create connection ib using the local host and
port number 7496.

 ib = ibtws('',7496);

MATLAB returns ib as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX object, the local host, and the port number that you choose.

Create IB Trader Workstation IContract Objects

Create the IB Trader Workstation IContract object ibContract1. Here, this object
describes the first call option in the calendar spread. Create an IContract object with
these property values:

• Google symbol.
• Stock option.
• Expiry date is August 2014.
• Strike price is $535.00.
• Call option.
• Number of shares is 100.

4 Sample Code for Workflows

4-40

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

• Aggregate exchange.
• Primary exchange
• USD currency.

Here, EX is a sample primary exchange name. Substitute your primary exchange name in
ibContract1.primaryExchange.

ibContract1 = ib.Handle.createContract;
ibContract1.symbol = 'GOOG';
ibContract1.secType = 'OPT';
ibContract1.expiry = '201408';
ibContract1.strike = 535;
ibContract1.right = 'C';
ibContract1.multiplier = '100';
ibContract1.exchange = 'SMART';
ibContract1.primaryExchange = 'EX';
ibContract1.currency = 'USD';

Request contract details for ibContract1.

[cd1,ibReqID1] = contractdetails(ib,ibContract1);

cd1 returns the contract details data for ibContract1. ibReqID1 returns the request
identifier for this contract details request.

Create the IB Trader Workstation IContract object ibContract2. Here, this object
describes the second call option in the calendar spread. Create an IContract object with
these property values:

• Google symbol.
• Stock option.
• Expiry date is September 2014.
• Strike price is $535.00.
• Call option.
• Number of shares is 100.
• Aggregate exchange.
• Primary exchange
• USD currency.

 Create Interactive Brokers Combination Order

4-41

Here, EX is a sample primary exchange name. Substitute your primary exchange name in
ibContract2.primaryExchange.

ibContract2 = ib.Handle.createContract;
ibContract2.symbol = 'GOOG';
ibContract2.secType = 'OPT';
ibContract2.expiry = '201409';
ibContract2.strike = 535;
ibContract2.right = 'C';
ibContract2.multiplier = '100';
ibContract2.exchange = 'SMART';
ibContract2.primaryExchange = 'EX';
ibContract2.currency = 'USD';

Request contract details for ibContract2.

[cd2,ibReqID2] = contractdetails(ib,ibContract2);

cd2 returns the contract details data for ibContract2. ibReqID2 returns the request
identifier for this contract details request.

Create IB Trader Workstation IComboLegList Object

To define the legs of the combination order, create the IB Trader Workstation
IComboLegList object comboLegs.

comboLegs = ib.Handle.createComboLegList;

Here, this combination order has two legs. Add the first leg to comboLegs. The first leg
contains these property values:

• IB Trader Workstation contract identifier for the first contract.
• One-to-one leg ratio.
• Sell the call option.
• Aggregate exchange.
• Identify an open or close order based on the parent security.
• IB Trader Workstation routes the order without a designated broker.
• Blank designated broker.

ibLeg1 = comboLegs.Add;
ibLeg1.conId = cd1.summary.conId;
ibLeg1.ratio = 1;

4 Sample Code for Workflows

4-42

ibLeg1.action = 'SELL';
ibLeg1.exchange = 'SMART';
ibLeg1.openClose = 0;
ibLeg1.shortSaleSlot = 0;
ibLeg1.designatedLocation = '';

Add the second leg to comboLegs. The second leg contains these property values:

• IB Trader Workstation contract identifier for the second contract.
• One-to-one leg ratio.
• Buy the call option.
• Aggregate exchange.
• Identify an open or close order based on the parent security.
• IB Trader Workstation routes the order without a designated broker.
• Blank designated broker.

ibLeg2 = comboLegs.Add;
ibLeg2.conId = cd2.summary.conId;
ibLeg2.ratio = 1;
ibLeg2.action = 'BUY';
ibLeg2.exchange = 'SMART';
ibLeg2.openClose = 0;
ibLeg2.shortSaleSlot = 0;
ibLeg2.designatedLocation = '';

Create the Interactive Brokers Combination Order

Create the IB Trader Workstation IContract object orderContract for the
combination order. Create an IContract object with these property values:

• Google symbol
• Combination order type BAG
• Aggregate exchange
• Primary exchange
• USD currency
• IB Trader Workstation IComboLegList object comboLegs

Here, EX is a sample primary exchange name. Substitute your primary exchange name in
orderContract.primaryExchange.

 Create Interactive Brokers Combination Order

4-43

orderContract = ib.Handle.createContract;
orderContract.symbol = 'GOOG';
orderContract.secType = 'BAG';
orderContract.exchange = 'SMART';
orderContract.primaryExchange = 'EX';
orderContract.currency = 'USD';
orderContract.comboLegs = comboLegs;

Create the IB Trader Workstation IOrder object ibOrder. Here, the combination order
is a market order to buy one combination of the two legs.

ibOrder = ib.Handle.createOrder;
ibOrder.action = 'BUY';
ibOrder.totalQuantity = 1;
ibOrder.orderType = 'MKT';

Request the next valid order identification number id using orderid.

id = orderid(ib);

Execute the combination order ibOrder using these arguments:

• IB Trader Workstation connection ib
• Combination order IContract object orderContract
• IB Trader Workstation IOrder object ibOrder
• Order identifier id
• Sample event handler ibExampleEventHandler

d = createOrder(ib,orderContract,ibOrder,id,@ibExampleEventHandler)

d =

 768413.00

d returns the unique order identifier for this combination order.

Close the Connection

Close the IB Trader Workstation connection ib.

4 Sample Code for Workflows

4-44

close(ib)

See Also
close | contractdetails | createOrder | ibtws | orderid

Related Examples
• “Create an Order Using IB Trader Workstation” on page 1-8
• “Create and Manage an Interactive Brokers Order” on page 4-27
• “Request Interactive Brokers Historical Data” on page 4-33
• “Request Interactive Brokers Real-Time Data” on page 4-36

More About
• “Workflow for Interactive Brokers” on page 2-6
• “Writing and Running Custom Event Handler Functions with Interactive Brokers” on

page 1-28

External Websites
• Interactive Brokers API Reference Guide

 See Also

4-45

https://www.interactivebrokers.com/en/software/api/api.htm

Create CQG Orders
This example shows how to connect to CQG, define the event handlers, subscribe to the
security, define the account handle, and submit orders for execution.

Create the CQG Connection

Create the CQG connection object using cqg.

c = cqg;

Define Event Handlers

Register the sample event handler cqgconnectioneventhandler to track events
associated with the connection status.

eventNames = {'CELStarted','DataError','IsReady', ...
 'DataConnectionStatusChanged', ...
 'GWConnectionStatusChanged', ...
 'GWEnvironmentChanged'};

for i = 1:length(eventNames)
 registerevent(c.Handle,{eventNames{i}, ...
 @(varargin)cqgconnectioneventhandler(varargin{:})})
end

cqgconnectioneventhandler is assigned to the events in eventNames.

Set the API configuration properties. For example, to set the time zone to Eastern Time,
enter the following.

c.APIConfig.TimeZoneCode = 'tzEastern';

c.APIConfig is a CQG configuration object. For details about setting API configuration
properties, see CQG API Reference Guide.

Establish the connection to CQG.

startUp(c)

CELStarted
DataConnectionStatusChanged
GWConnectionStatusChanged

The connection event handler displays event names for a successful CQG connection.

4 Sample Code for Workflows

4-46

Register an event handler to track events associated with a CQG instrument subscription.

streamEventNames = {'InstrumentSubscribed','InstrumentChanged', ...
 'IncorrectSymbol'};

for i = 1:length(streamEventNames)
 registerevent(c.Handle,{streamEventNames{i}, ...
 @(varargin)cqgrealtimeeventhandler(varargin{:})})
end

Register an event handler to track events associated with a CQG order and account.

orderEventNames = {'AccountChanged','OrderChanged','AllOrdersCanceled'};

for i = 1:length(orderEventNames)
 registerevent(c.Handle,{orderEventNames{i}, ...
 @(varargin)cqgordereventhandler(varargin{:})})
end

Subscribe to the CQG Instrument

With the connection established, subscribe to the CQG instrument. The instrument must
be successfully subscribed first before it is available for transactions. You must format the
instrument name in the CQG long symbol view. For example, to subscribe to a security
tied to the EURIBOR, enter the following.

realtime(c,'F.US.IE')
pause(2)

F.US.IEK13 subscribed

pause causes MATLAB to wait 2 seconds before continuing to give time for CQG to
subscribe to the instrument.

Create the CQG instrument object.

To use the instrument in createOrder, import the name of the instrument
cqgInstrumentName into the current MATLAB workspace. Then, create the
CQGInstrument object cqgInst.

cqgInstrumentName = evalin('base','cqgInstrument');
cqgInst = c.Handle.Instruments.Item(cqgInstrumentName);

 Create CQG Orders

4-47

Set Up Account Credentials

Set the CQG flags to enable account information retrieval.

set(c.Handle,'AccountSubscriptionLevel','aslNone')
set(c.Handle,'AccountSubscriptionLevel','aslAccountUpdatesAndOrders')
pause(2)

ans =
 AccountChanged

The CQG API shows that account information changed.

Set up the CQG account credentials.

Retrieve the CQGAccount object into accountHandle to use your account information in
createOrder. For details about creating a CQGAccount object, see CQG API Reference
Guide.

accountHandle = c.Handle.Accounts.ItemByIndex(0);

Create CQG Market, Limit, Stop, and Stop Limit Orders

Create a market order that buys one share of the subscribed security cqgInst using the
account credentials accountHandle.

quantity = 1;

oMarket = createOrder(c,cqgInst,1,accountHandle,quantity);
oMarket.Place

ans =
 OrderChanged

The CQGOrder object oMarket contains the order. The CQG API executes the market
order using the CQG API function Place. After execution, the order status changes.

To use a character vector for the security, subscribe to the security 'EZC' as shown
above. Then, create a market order that buys one share of the security 'EZC' using the
defined account credentials accountHandle.

cqgInstrumentName = 'EZC';
quantity = 1;

4 Sample Code for Workflows

4-48

oMarket = createOrder(c,cqgInstrumentName,1,accountHandle,quantity);
oMarket.Place

ans =
 OrderChanged

The CQGOrder object oMarket contains the order. The CQG API executes the market
order using the CQG API function Place. After execution, the order status changes.

To create a limit order, you can use the bid price. Extract the CQG bid object qtBid from
the previously defined CQGInstrument object cqgInst. For details about the
CQGInstrument object, see CQG API Reference Guide.

qtBid = cqgInst.get('Bid');

Create a limit order that buys one share of the previously subscribed security cqgInst
using the previously defined account credentials accountHandle and qtBid for the limit
price.

quantity = 1;
limitprice = qtBid.get('Price');

oLimit = createOrder(c,cqgInst,2,accountHandle,quantity,limitprice);
oLimit.Place

ans =
 OrderChanged

The CQGOrder object oLimit contains the order. The CQG API executes the limit order
using the CQG API function Place. After execution, the order status changes.

To create a stop order, you can use the trade price. Extract the CQG trade object
qtTrade from the previously defined CQGInstrument object cqgInst.

qtTrade = cqgInst.get('Trade');

Create a stop order that buys one share of the previously subscribed security cqgInst
using the previously defined account credentials accountHandle and qtTrade for the
stop price.

quantity = 1;
stopprice = qtTrade.get('Price');

oStop = createOrder(c,cqgInst,3,accountHandle,quantity,stopprice);
oStop.Place

 Create CQG Orders

4-49

ans =
 OrderChanged

The CQGOrder object oStop contains the order. The CQG API executes the stop order
using the CQG API function Place. After execution, the order status changes.

To create a stop limit order, use both the bid and trade prices defined above. Create a
stop limit order that buys one share of the subscribed security cqgInst using the defined
account credentials accountHandle.

quantity = 1;

oStopLimit = createOrder(c,cqgInst,4,accountHandle,quantity, ...
 limitprice,stopprice);
oStopLimit.Place

ans =
 OrderChanged

The CQGOrder object oStopLimit contains the order. The CQG API executes the stop
limit order using the CQG API function Place. After execution, the order status changes.

Close the CQG Connection

shutDown(c)

See Also
close | cqg | createOrder | history | realtime | shutDown | startUp |
timeseries

Related Examples
• “Create an Order Using CQG” on page 1-12
• “Request CQG Historical Data” on page 4-52
• “Request CQG Real-Time Data” on page 4-59
• “Request CQG Intraday Tick Data” on page 4-55

More About
• “Workflow for CQG” on page 2-9

4 Sample Code for Workflows

4-50

External Websites
• CQG API Reference Guide

 See Also

4-51

https://partners.cqg.com/api-resources/technical-documentation

Request CQG Historical Data
This example shows how to connect to CQG, define event handlers, and request historical
data.

Connect to CQG

Create the CQG connection object using cqg.

c = cqg;

Define Event Handlers

Register the sample event handler cqgconnectioneventhandler to track events
associated with connection status.

eventNames = {'CELStarted','DataError','IsReady', ...
 'DataConnectionStatusChanged'};

for i = 1:length(eventNames)
 registerevent(c.Handle,{eventNames{i}, ...
 @(varargin)cqgconnectioneventhandler(varargin{:})})
end

cqgconnectioneventhandler is assigned to the events in eventNames.

Set the API configuration properties. For example, to set the time zone to Eastern Time,
enter the following.

c.APIConfig.TimeZoneCode = 'tzEastern';

c.APIConfig is a CQG configuration object. For details about setting API configuration
properties, see CQG API Reference Guide.

Create the CQG connection.

startUp(c)

CELStarted
DataConnectionStatusChanged

The connection event handler displays event names for a successful CQG connection.

Register an event handler to build and initialize the output data matrix
cqgHistoryData.

4 Sample Code for Workflows

4-52

histEventNames = {'ExpressionResolved','ExpressionAdded', ...
 'ExpressionUpdated'};

for i = 1:length(histEventNames)
 registerevent(c.Handle,{histEventNames{i}, ...
 @(varargin)cqgexpressioneventhandler(varargin{:})})
end

Pass an Additional Optional Request Property

Pass an additional optional request property by creating the structure x and setting the
optional property.

x.UpdatesEnabled = false;

For additional optional properties you can set, see CQG API Reference Guide.

Request CQG Historical Data

Request daily data for instrument XYZ.XYZ for the last 10 days using the additional
optional request property x. XYZ.XYZ is a sample instrument name. To request historical
data for your instrument, substitute the symbol name in instrument.

instrument = {'Close(XYZ.XYZ)','Open(XYZ.XYZ)'};
startdate = floor(now) - 10;
enddate = floor(now);
period = 'hpDaily';

history(c,instrument,startdate,enddate,period,x)
pause(1)

MATLAB writes the variable cqgHistoryData to the Workspace browser.

Display cqgHistoryData.

cqgHistoryData

cqgHistoryData =
 1.0e+05 *
 7.3533 0.0063 0.0063
 7.3533 0.0064 0.0064
 7.3533 0.0065 0.0065
 7.3534 0.0065 0.0065
 7.3534 0.0066 0.0066
 7.3534 0.0065 0.0065

 Request CQG Historical Data

4-53

 7.3534 0.0066 0.0066
 7.3534 0.0066 0.0066
 7.3534 0.0064 0.0064

Each row in cqgHistoryData represents data for 1 day. The columns in
cqgHistoryData show the numerical representation of the timestamp, the close price,
and the open price for the instrument during the day.

Close the CQG Connection

close(c)

See Also
close | cqg | createOrder | history | realtime | shutDown | startUp |
timeseries

Related Examples
• “Create an Order Using CQG” on page 1-12
• “Create CQG Orders” on page 4-46
• “Request CQG Real-Time Data” on page 4-59
• “Request CQG Intraday Tick Data” on page 4-55

More About
• “Workflow for CQG” on page 2-9

External Websites
• CQG API Reference Guide

4 Sample Code for Workflows

4-54

https://partners.cqg.com/api-resources/technical-documentation

Request CQG Intraday Tick Data
This example shows how to connect to CQG, define event handlers, and request intraday
and timed bar data.

Connect to CQG and Define Event Handlers

Create the CQG connection object using cqg.

c = cqg;

Register the sample event handler cqgconnectioneventhandler to track events
associated with the connection status.

eventNames = {'CELStarted','DataError','IsReady', ...
 'DataConnectionStatusChanged'};

for i = 1:length(eventNames)
 registerevent(c.Handle,{eventNames{i}, ...
 @(varargin)cqgconnectioneventhandler(varargin{:})})
end

cqgconnectioneventhandler is assigned to the events in eventNames.

Set the API configuration properties. For example, to set the time zone to Eastern Time,
enter the following.

c.APIConfig.TimeZoneCode = 'tzEastern';

c.APIConfig is a CQG configuration object. For details about setting API configuration
properties, see CQG API Reference Guide.

Create the CQG connection.

startUp(c)

CELStarted
DataConnectionStatusChanged

The connection event handler displays event names for a successful CQG connection.

Register an event handler to build and initialize the output data structure cqgTickData
used for storing intraday tick data.

 Request CQG Intraday Tick Data

4-55

rawEventNames = {'TicksResolved','TicksAdded'};

for i = 1:length(rawEventNames)
 registerevent(c.Handle,{rawEventNames{i}, ...
 @(varargin)cqgintradayeventhandler(varargin{:})})
end

Request CQG Intraday Tick Data

Pass an additional optional request property by creating the structure x, and setting the
optional property. To see only bid tick data, for example, set TickFilter to 'tfBid'.

x.TickFilter = 'tfBid';

TickFilter and SessionsFilter are the only valid additional optional properties for
calling timeseries without a timed bar request. For additional property values you can
set, see CQG API Reference Guide.

Request intraday tick data for instrument XYZ.XYZ for the last 2 days using the additional
optional request property x. XYZ.XYZ is a sample instrument name. To request intraday
tick data for your instrument, substitute the symbol name in instrument.

instrument = 'XYZ.XYZ';
startdate = now - 2;
enddate = now;

timeseries(c,instrument,startdate,enddate,[],x)
pause(1)

pause causes MATLAB to wait 1 second before continuing to give time for CQG to
subscribe to the instrument. MATLAB writes the variable cqgTickData to the Workspace
browser.

Display cqgTickData.

cqgTickData

cqgTickData =
 Timestamp: {2x1 cell}
 Price: [2x1 double]
 Volume: [2x1 double]
 PriceType: {2x1 cell}
 CorrectionType: {2x1 cell}
 SalesConditionLabel: {2x1 cell}

4 Sample Code for Workflows

4-56

 SalesConditionCode: [2x1 double]
 ContributorId: {2x1 cell}
 ContributorIdCode: [2x1 double]
 MarketState: {2x1 cell}

Display data in the Timestamp property of cqgTickData.

cqgTickData.Timestamp

ans =
 '4/17/2013 2:14:00 PM'
 '4/18/2013 2:14:00 PM'

Request CQG Timed Bar Data

Register an event handler to build and initialize the output data matrix
cqgTimedBarData used for storing timed bar data.

aggEventNames = {'TimedBarsResolved','TimedBarsAdded', ...
 'TimedBarsUpdated','TimedBarsInserted', ...
 'TimedBarsRemoved'};

for i = 1:length(aggEventNames)
 registerevent(c.Handle,{aggEventNames{i}, ...
 @(varargin)cqgintradayeventhandler(varargin{:})})
end

Pass additional optional request properties by creating the structure x, and setting the
optional property.

x.UpdatesEnabled = false;

Request timed bar data for instrument XYZ.XYZ for the last fraction of a day using the
additional optional request property x. XYZ.XYZ is a sample instrument name. To request
timed bar data for your instrument, substitute the symbol name in instrument.

instrument = 'XYZ.XYZ';
startdate = now - .1;
enddate = now;
intraday = 1;

timeseries(c,instrument,startdate,enddate,intraday,x)
pause(1)

MATLAB writes the variable cqgTimedBarData to the Workspace browser.

 Request CQG Intraday Tick Data

4-57

Display cqgTimedBarData.

cqgTimedBarData

cqgTimedBarData =
 1.0e+09 *
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 ...

cqgTimedBarData returns timed bar data for the specified instrument. The columns of
cqgTimedBarData display data corresponding to the timestamp, open price, high price,
low price, close price, mid-price, HLC3, average price, and tick volume.

Close the CQG Connection

close(c)

See Also
close | cqg | createOrder | history | realtime | shutDown | startUp |
timeseries

Related Examples
• “Create an Order Using CQG” on page 1-12
• “Create CQG Orders” on page 4-46
• “Request CQG Historical Data” on page 4-52
• “Request CQG Real-Time Data” on page 4-59

More About
• “Workflow for CQG” on page 2-9

External Websites
• CQG API Reference Guide

4 Sample Code for Workflows

4-58

https://partners.cqg.com/api-resources/technical-documentation

Request CQG Real-Time Data
This example shows how to connect to CQG, define event handlers, and request current
data.

Connect to CQG

Create the CQG connection object using cqg.

c = cqg;

Define Event Handlers

Register the sample event handler cqgconnectioneventhandler to track events for
the connection status.

eventNames = {'CELStarted','DataError','IsReady', ...
 'DataConnectionStatusChanged','GWConnectionStatusChanged', ...
 'GWEnvironmentChanged'};

for i = 1:length(eventNames)
 registerevent(c.Handle,{eventNames{i}, ...
 @(varargin)cqgconnectioneventhandler(varargin{:})})
end

cqgconnectioneventhandler is assigned to the events in eventNames.

Set the API configuration properties. For example, to set the time zone to Eastern Time,
enter the following.

c.APIConfig.TimeZoneCode = 'tzEastern';

c.APIConfig is a CQG configuration object. For details about setting the API
configuration properties, see CQG API Reference Guide.

Establish the connection to CQG.

startUp(c)

CELStarted
DataConnectionStatusChanged
GWConnectionStatusChanged

The connection event handler displays event names for a successful CQG connection.

 Request CQG Real-Time Data

4-59

Register an event handler to track events associated with the CQG instrument
subscription.

streamEventNames = {'InstrumentSubscribed','InstrumentChanged', ...
 'IncorrectSymbol'};

for i = 1:length(streamEventNames)
 registerevent(c.Handle,{streamEventNames{i}, ...
 @(varargin)cqgrealtimeeventhandler(varargin{:})})
end

Request CQG Real-Time Data

With the connection established, subscribe to the instrument. The instrument name must
be formatted in the CQG long symbol view. For example, to subscribe to a security tied to
corn, enter the following. (F.US.EZC is a sample instrument name. To request real-time
data for your instrument, substitute this sample name with the name of your instrument.)

instrument = 'F.US.EZC';
realtime(c,instrument)

MATLAB writes the structure variable cqgDataEZC to the Workspace browser.

Display cqgDataEZC.

cqgDataEZC(1,1)

ans =
 Price: {15x1 cell}
 Volume: {15x1 cell}
 ServerTimestamp: {15x1 cell}
 Timestamp: {15x1 cell}
 Type: {15x1 cell}
 Name: {15x1 cell}
 IsValid: {15x1 cell}
 Instrument: {15x1 cell}
 HasVolume: {15x1 cell}

cqgDataEZC returns the current quotes for the security.

Display data in the Price property of cqgDataEZC.

cqgDataEZC(1,1).Price

ans =
 [-2.1475e+09]

4 Sample Code for Workflows

4-60

 [-2.1475e+09]
 [-2.1475e+09]
 [660.5000]
 []
 []
 [-2.1475e+09]
 [-2.1475e+09]
 [-2.1475e+09]
 [-2.1475e+09]
 [-2.1475e+09]
 [-2.1475e+09]
 [-2.1475e+09]
 [660.5000]
 [-2.1475e+09]

Close the CQG Connection

close(c)

See Also
close | cqg | createOrder | history | realtime | shutDown | startUp |
timeseries

Related Examples
• “Create an Order Using CQG” on page 1-12
• “Create CQG Orders” on page 4-46
• “Request CQG Historical Data” on page 4-52
• “Request CQG Intraday Tick Data” on page 4-55

More About
• “Workflow for CQG” on page 2-9

External Websites
• CQG API Reference Guide

 See Also

4-61

https://partners.cqg.com/api-resources/technical-documentation

WDS Topics

• “Decide to Buy Shares Using Current and Historical WDS Data” on page 5-2
• “Create Order Using Real-Time Snapshot WDS Data” on page 5-4

5

Decide to Buy Shares Using Current and Historical WDS
Data

This example shows how to connect to Wind Data Feed Services (WDS) and retrieve
current and historical WDS data. The example then shows how to trigger a buy decision
for a single security using the current high price. This example requires that you open
and log in to the Wind Financial Terminal.

Connect to WDS

c = wind;

Retrieve Current Data for Security

Format output data for currency.

format bank

Using the 0001.HK security, retrieve the current high and low prices.

s = '0001.HK';
f = ["high","low"];
d = getdata(c,s,f)

d=1×2 table
 HIGH LOW
 _____ _____

 0001.HK 99.00 97.70

d is a table with one row for the single security. Each variable in the table corresponds to
each specified field.

Retrieve Historical Data for Security

Using the same security, retrieve the high and low prices from August 1, 2017 through
August 30, 2017.

f = ["high","low"];
startdate = datetime('2017-08-01');
enddate = datetime('2017-08-30');
h = history(c,s,f,startdate,enddate);

5 WDS Topics

5-2

h is a timetable that contains one row for each trading day with the time and a variable
for each specified field.

To create a threshold, you can analyze the historical data for the maximum and minimum
high price.

max(h.HIGH)

ans = 108.9000

min(h.HIGH)

ans = 100.7000

Decide to Buy Shares

Assume a threshold of $100. Determine if the current high price is less than $100. Set the
buy indicator buynow to true when the threshold is met.

buynow = (d.HIGH < 100);

Use the buy indicator and the createorder function to create a buy order of 0001.HK
shares.

Close WDS Connection

close(c)

See Also
close | createorder | getdata | history | wind

More About
• “Create Order Using Real-Time Snapshot WDS Data” on page 5-4

External Websites
• Wind Data Feed Services (WDS)

 See Also

5-3

http://www.wind.com.cn/en/product/Wind.DataFeed.html

Create Order Using Real-Time Snapshot WDS Data
This example shows how to connect to Wind Data Feed Services (WDS), retrieve real-time
snapshot data, and perform simple data analysis to make an investment decision. The
example then shows how to log in to the WDS order management system, create an order,
and query information about the order. This example requires that you open and log in to
the Wind Financial Terminal.

Connect to WDS

c = wind;

Retrieve Snapshot Data

Format output data for currency.

format bank

Using the 600000.SH security and the WDS connection, retrieve real-time snapshot data
for the last price and volume fields.

s = '600000.SH';
f = {'rt_last','rt_vol'};

d = realtime(c,s,f)

d =

 1×3 timetable

 Time Codes RT_LAST RT_VOL
 ____________________ ___________ _______ ____________

 05-Dec-2017 12:33:50 '600000.SH' 13.17 123796797.00

d is a timetable that contains a row for the security with the time and these variables:

• Security
• Last price
• Volume

5 WDS Topics

5-4

Analyze Snapshot Price

Assume a price threshold of 12, specified in the CNY currency. Compare the snapshot
price to the threshold. The sell indicator contains the logical value 1.

sellnow = (d.RT_LAST > 12);

Set the direction of the order by using the sell indicator.

if (sellnow)
 direction = 'Sell';
else
 direction = 'Buy';
end

Create WDS Order

Log in to the WDS order management system using the WDS connection. Specify the
broker, branch, user name, password, and account type.

broker = "0000";
branch = "0";
capitalaccount = "1234567891011";
password = "abcdefghi";
accttype = "SHSZ";
dlogin = tradelogin(c,broker,branch, ...
 capitalaccount,password,accttype);

Create a sell order of 100 shares of the 600000.SH security using the WDS connection.
Sell shares with the order price 13.17, specified in the CNY currency. Use the
'LogonID' name-value pair argument to specify the login identifier. Use the
'TradePassword' name-value pair argument to specify the password.

price = '13.17';
quantity = '100';
logonid = '1';
password = "abcdefghi";
d = createorder(c,s,direction,price,quantity, ...
 'LogonID',logonid,'TradePassword',password)

d =

 1×8 table

 RequestID SecurityCode TradeSide OrderPrice OrderVolume LogonID ErrorCode ErrorMsg

 Create Order Using Real-Time Snapshot WDS Data

5-5

 _________ ____________ _________ __________ ___________ _______ _________ _____________

 20 '600000.sh' 'SELL' '13.17' '100' '1' 0 'Sending ...'

d is a table with these variables:

• Request identifier
• Security code
• Direction
• Order price
• Order volume
• Login identifier
• Error code
• Error message

Query for the status of the executed order and display the status. The order status
'Normal' indicates successful order execution.

d = query(c,'Order');
d.OrderStatus

d =

 'Normal'

Close WDS Connection

Log out from the WDS order management system using the login identifier returned by
the tradelogin function.

logonid = dlogin.LogonID;
d = tradelogout(c,logonid);

Close the WDS connection.

close(c)

See Also
close | createorder | query | realtime | tradelogin | tradelogout | wind

5 WDS Topics

5-6

More About
• “Decide to Buy Shares Using Current and Historical WDS Data” on page 5-2

External Websites
• Wind Data Feed Services (WDS)

 See Also

5-7

http://www.wind.com.cn/en/product/Wind.DataFeed.html

Functions — Alphabetical List

6

emsx
Create Bloomberg EMSX connection

Description
The emsx function creates an emsx object, which represents a Bloomberg EMSX
connection. After you create an emsx object, you can use the object functions to create
and route orders, and manage orders and routes. For details about Bloomberg EMSX, see
the EMSX API Programmers Guide.

Creation

Syntax
c = emsx(servicename)

Description
c = emsx(servicename) creates a connection to the local Bloomberg EMSX
communications server using the service servicename.

Input Arguments
servicename — Bloomberg EMSX service name
'//blp/emapisvc_beta' | '//bmp/emapisvc'

Bloomberg EMSX service name, specified as one of these connection types.

Connection Type Bloomberg EMSX Service Name
Test '//blp/emapisvc_beta'
Production '//bmp/emapisvc'

6 Functions — Alphabetical List

6-2

https://emsx-api-doc.readthedocs.io/en/latest/index.html

Properties
Session — Bloomberg EMSX session
session object

Bloomberg EMSX session, specified as a Bloomberg EMSX session object.
Example: [1x1 com.bloomberglp.blpapi.Session]

Service — Bloomberg EMSX service
service object

Bloomberg EMSX service, specified as a Bloomberg EMSX service object.

The emsx function sets this property using the servicename input argument.
Example: [1x1 com.bloomberglp.blpapi.impl.aQ]

Ipaddress — IP address
'localhost' (default) | character vector

IP address of the machine running Bloomberg EMSX, specified as a character vector.
Data Types: char

Port — Port number
numeric scalar

Port number of the machine running Bloomberg EMSX, specified as a numeric scalar.
Example: 8194
Data Types: double

Object Functions

Bloomberg EMSX Connection
close Close Bloomberg EMSX connection
orders Obtain Bloomberg EMSX order subscription
routes Obtain Bloomberg EMSX route subscription

 emsx

6-3

Bloomberg EMSX Order and Route Management
createOrder Create Bloomberg EMSX order
routeOrder Route Bloomberg EMSX order
routeOrderWithStrat Route Bloomberg EMSX order with strategies
groupRouteOrderWithStrat Route multiple Bloomberg EMSX orders with strategies
createOrderAndRoute Create and route Bloomberg EMSX order
createOrderAndRouteWithStrat Create and route Bloomberg EMSX order with

strategies
modifyOrder Modify Bloomberg EMSX order
modifyRoute Modify Bloomberg EMSX route
modifyRouteWithStrat Modify Bloomberg EMSX route with strategies
deleteOrder Delete Bloomberg EMSX order
deleteRoute Delete Bloomberg EMSX active shares
processEvent Sample Bloomberg EMSX event handler

Bloomberg EMSX Information
emsxOrderBlotter Bloomberg EMSX example order blotter
getBrokerInfo Obtain Bloomberg EMSX broker and strategy information
getAllFieldMetaData Obtain Bloomberg EMSX field information

Examples

Connect to Bloomberg EMSX Test Service

First, create a Bloomberg EMSX test service connection. Then, obtain broker information.

Create a connection c to the Bloomberg EMSX test service. You can place test calls using
this service.

 c = emsx('//blp/emapisvc_beta')

c =

 emsx with properties:

 Session: [1x1 com.bloomberglp.blpapi.Session]
 Service: [1x1 com.bloomberglp.blpapi.impl.aQ]
 Ipaddress: 'localhost'
 Port: 8194

6 Functions — Alphabetical List

6-4

MATLAB returns c as the connection to the Bloomberg EMSX test service with the
following properties:

• Bloomberg EMSX session object
• Bloomberg EMSX service object
• IP address of the machine running the Bloomberg EMSX test service
• Port number of the machine running the Bloomberg EMSX test service

Define the broker and strategy information structure brokerstrat. Obtain broker
information using the Bloomberg EMSX connection c and structure brokerstrat.

The EMSX_BROKERS field lists the Bloomberg EMSX brokers.

brokerstrat.EMSX_TICKER = 'ABCD US Equity';

r = getBrokerInfo(c,brokerstrat)

 r =

 EMSX_BROKERS: {2x1 cell}

Close the Bloomberg EMSX connection.

close(c)

Connect to Bloomberg EMSX Production Service

First, create a Bloomberg EMSX production service connection. Then, obtain broker
information.

Create a connection c to the Bloomberg EMSX production service. You can place live calls
using this service.

c = emsx('//bmp/emapisvc')

c =

 emsx with properties:

 Session: [1x1 com.bloomberglp.blpapi.Session]
 Service: [1x1 com.bloomberglp.blpapi.impl.aQ]

 emsx

6-5

 Ipaddress: 'localhost'
 Port: 8194

MATLAB returns c as the connection to the Bloomberg EMSX test service with the
following properties:

• Bloomberg EMSX session object
• Bloomberg EMSX service object
• IP address of the machine running the Bloomberg EMSX production service
• Port number of the machine running the Bloomberg EMSX production service

Define the broker and strategy information structure brokerstrat. Obtain broker
information using the Bloomberg EMSX connection c and structure brokerstrat.

The EMSX_BROKERS field lists the Bloomberg EMSX brokers.

brokerstrat.EMSX_TICKER = 'ABCD US Equity';

r = getBrokerInfo(c,brokerstrat)

 r =

 EMSX_BROKERS: {2x1 cell}

Close the Bloomberg EMSX connection.

close(c)

See Also

Topics
“Create an Order Using Bloomberg EMSX” on page 1-14
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2

External Websites
EMSX API Programmers Guide

6 Functions — Alphabetical List

6-6

https://emsx-api-doc.readthedocs.io/en/latest/index.html

Introduced in R2013a

 emsx

6-7

close
Close Bloomberg EMSX connection

Syntax
close(c)

Description
close(c) closes the Bloomberg EMSX connection c.

Examples

Close the Bloomberg EMSX Connection

Create the Bloomberg EMSX connection c.

 c = emsx('//blp/emapisvc_beta');

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

6 Functions — Alphabetical List

6-8

See Also
createOrder | createOrderAndRoute | emsx | routeOrder

Topics
“Create an Order Using Bloomberg EMSX” on page 1-14
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2

External Websites
EMSX API Programmers Guide

Introduced in R2013a

 close

6-9

https://emsx-api-doc.readthedocs.io/en/latest/index.html

createOrder
Create Bloomberg EMSX order

Syntax
events = createOrder(c,order)
events = createOrder(c,order,'timeOut',timeout)

createOrder(___ ,'useDefaultEventHandler',false)

___ = createOrder(,c,order,options)

Description
events = createOrder(c,order) creates a Bloomberg EMSX order using the
Bloomberg EMSX connection c and order request order that contains the required fields
for creating an order. createOrder returns the order sequence number and status
message using the default event handler.

events = createOrder(c,order,'timeOut',timeout) specifies a timeout value
timeout for the execution of the default event handler.

createOrder(___ ,'useDefaultEventHandler',false) creates a Bloomberg
EMSX order using any of the input arguments in the previous syntaxes and a custom
event handler. Write a custom event handler to process the events associated with
creating orders. This syntax does not have an output argument because the custom event
handler processes the contents of the event queue. If you want to use the default event
handler instead, set the flag 'useDefaultEventHandler' to true and use the events
output argument. By default, the flag 'useDefaultEventHandler' is set to true.

___ = createOrder(,c,order,options) uses the options structure to customize
the output, which is useful to preconfigure and save your options for repeated use. The
available options structure fields are timeOut and useDefaultEventHandler. Use
the events output argument when useDefaultEventHandler is set to true and omit
this output argument when useDefaultEventHandler is set to false.

6 Functions — Alphabetical List

6-10

Examples

Create an Order Using the Default Event Handler

To create a Bloomberg EMSX order, create the connection c using emsx and set up the
order subscription using orders. For an example showing these activities, see “Create
and Manage a Bloomberg EMSX Order” on page 4-12.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Create the order using the Bloomberg EMSX connection c and order.

events = createOrder(c,order)

events =

 EMSX_SEQUENCE: 354646
 MESSAGE: 'Order created'

The default event handler processes the events associated with creating the order.
createOrder returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

 createOrder

6-11

close(c)

Create an Order Using a Timeout

To create a Bloomberg EMSX order, create the connection c using emsx and set up the
order subscription using orders. For an example showing these activities, see “Create
and Manage a Bloomberg EMSX Order” on page 4-12.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Create the order using the Bloomberg EMSX connection c and order. Set the timeout
value to 200 milliseconds.

events = createOrder(c,order,'timeOut',200)

events =

 EMSX_SEQUENCE: 354646
 MESSAGE: 'Order created'

The default event handler processes the events associated with creating the order.
createOrder returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

6 Functions — Alphabetical List

6-12

Close the Bloomberg EMSX connection.

close(c)

Create an Order Using a Custom Event Handler

To create a Bloomberg EMSX order, create the Bloomberg EMSX connection c using
emsx and set up the order subscription using orders. For an example showing these
activities, see “Create and Manage a Bloomberg EMSX Order” on page 4-12.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate')
start(t)

t is the MATLAB timer object. For details, see timer.

Create the order using the Bloomberg EMSX connection c and order. Set the flag
'useDefaultEventHandler' to false so that eventhandler processes the events
associated with creating an order.

createOrder(c,order,'useDefaultEventHandler',false)

 createOrder

6-13

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs. Stop the timer to stop data updates using
stop.

c.Session.unsubscribe(subs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)

Create an Order Using an Options Structure

To create a Bloomberg EMSX order, create the connection c using emsx and set up the
order subscription using orders. For an example showing these activities, see “Create
and Manage a Bloomberg EMSX Order” on page 4-12.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Create
the order using the Bloomberg EMSX connection c, order, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = createOrder(c,order,options)

6 Functions — Alphabetical List

6-14

events =

 EMSX_SEQUENCE: 354646
 MESSAGE: 'Order created'

The default event handler processes the events associated with creating the order.
createOrder returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

order — Order request
structure

Order request, specified as a structure using Bloomberg EMSX field properties. Use
getAllFieldMetaData to view all available field property options for order. Convert
the number of shares to a 32-bit signed integer using int32. order contains these fields.

Field Description
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX amount of shares
EMSX_ORDER_TYPE Bloomberg EMSX order type

 createOrder

6-15

Field Description
EMSX_BROKER Bloomberg EMSX broker name
EMSX_TIF Bloomberg EMSX time in force
EMSX_HAND_INSTRUCTION Bloomberg EMSX hand instruction
EMSX_SIDE Bloomberg EMSX buy or sell specification

Example: order.EMSX_TICKER = 'XYZ';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.
Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.
Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

6 Functions — Alphabetical List

6-16

Output Arguments
events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

See Also
close | createOrder | createOrderAndRoute | createOrderAndRouteWithStrat |
delete | deleteOrder | deleteRoute | emsx | modifyOrder | orders | routeOrder |
routes | start | stop | timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

External Websites
EMSX API Programmers Guide

Introduced in R2013a

 createOrder

6-17

https://emsx-api-doc.readthedocs.io/en/latest/index.html

createOrderAndRoute
Create and route Bloomberg EMSX order

Syntax
events = createOrderAndRoute(c,order)
events = createOrderAndRoute(c,order,'timeOut',timeout)

createOrderAndRoute(___ ,'useDefaultEventHandler',false)

___ = createOrderAndRoute(c,order,options)

Description
events = createOrderAndRoute(c,order) creates and routes a Bloomberg EMSX
order using Bloomberg EMSX connection c and order request order.
createOrderAndRoute returns the order sequence number, route number, and status
message using the default event handler.

events = createOrderAndRoute(c,order,'timeOut',timeout) specifies a
timeout value timeout for the execution of the default event handler.

createOrderAndRoute(___ ,'useDefaultEventHandler',false) creates and
routes a Bloomberg EMSX order using any of the input arguments in the previous
syntaxes and a custom event handler. Write a custom event handler to process the events
associated with creating and routing orders. This syntax does not have an output
argument because the custom event handler processes the contents of the event queue. If
you want to use the default event handler instead, set the flag
'useDefaultEventHandler' to true and use the events output argument. By default,
the flag 'useDefaultEventHandler' is set to true.

___ = createOrderAndRoute(c,order,options) uses the options structure to
customize the output, which is useful to preconfigure and save your options for repeated
use. The available options structure fields are timeOut and
useDefaultEventHandler. Use the events output argument when

6 Functions — Alphabetical List

6-18

useDefaultEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

Examples

Create and Route an Order Using the Default Event Handler

To create and route a Bloomberg EMSX order, create the connection c using emsx and set
up the order and route subscription using orders and routes. For an example showing
these activities, see “Manage a Bloomberg EMSX Order and Route” on page 4-22.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Create and route the order using the Bloomberg EMSX connection c and order.

events = createOrderAndRoute(c,order)

events =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order created and routed'

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

 createOrderAndRoute

6-19

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Create and Route an Order Using a Timeout

To create and route a Bloomberg EMSX order, create the connection c using emsx and set
up the order and route subscription using orders and routes. For an example showing
these activities, see “Manage a Bloomberg EMSX Order and Route” on page 4-22.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Create and route the order using the Bloomberg EMSX connection c and order. Set the
timeout value to 200 milliseconds.

events = createOrderAndRoute(c,order,'timeOut',200)

events =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order created and routed'

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

6 Functions — Alphabetical List

6-20

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Create and Route an Order Using a Custom Event Handler

To create and route a Bloomberg EMSX order, create the Bloomberg EMSX connection c
using emsx and set up the order and route subscription using orders and routes. For
an example showing these activities, see “Manage a Bloomberg EMSX Order and Route”
on page 4-22.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

 createOrderAndRoute

6-21

t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate')
start(t)

t is the MATLAB timer object. For details, see timer.

Create and route the order using the Bloomberg EMSX connection c and order. Set the
flag 'useDefaultEventHandler' to false so that eventhandler processes the
events associated with creating and routing an order.

createOrderAndRoute(c,order,'useDefaultEventHandler',false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)

Create and Route an Order Using an Options Structure

To create and route a Bloomberg EMSX order, create the connection c using emsx and set
up the order and route subscription using orders and routes. For an example showing
these activities, see “Manage a Bloomberg EMSX Order and Route” on page 4-22.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';

6 Functions — Alphabetical List

6-22

order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Create
and route the order using the Bloomberg EMSX connection c, order, and options
structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = createOrderAndRoute(c,order,options)

events =

 EMSX_SEQUENCE: 728924
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order created and routed'

The default event handler processes the events associated with creating and routing the
order. createOrderAndRoute returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

 createOrderAndRoute

6-23

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

order — Order request
structure

Order request, specified as a structure using Bloomberg EMSX field properties. Use
getAllFieldMetaData to view all available field property options for order. Convert
the number of shares to a 32-bit signed integer using int32. order contains these fields.

Field Description
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX amount of shares
EMSX_ORDER_TYPE Bloomberg EMSX order type
EMSX_BROKER Bloomberg EMSX broker name
EMSX_TIF Bloomberg EMSX time in force
EMSX_HAND_INSTRUCTION Bloomberg EMSX hand instruction
EMSX_SIDE Bloomberg EMSX buy or sell specification

Example: order.EMSX_TICKER = 'XYZ';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

6 Functions — Alphabetical List

6-24

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.
Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.
Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments
events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

See Also
close | createOrder | createOrderAndRouteWithStrat | delete | deleteOrder |
deleteRoute | emsx | modifyOrder | orders | routeOrder | routes | start | stop |
timer

Topics
“Create an Order Using Bloomberg EMSX” on page 1-14
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17

 createOrderAndRoute

6-25

“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

External Websites
EMSX API Programmers Guide

Introduced in R2013a

6 Functions — Alphabetical List

6-26

https://emsx-api-doc.readthedocs.io/en/latest/index.html

createOrderAndRouteWithStrat
Create and route Bloomberg EMSX order with strategies

Syntax
events = createOrderAndRouteWithStrat(c,order,strat)
events = createOrderAndRouteWithStrat(c,order,strat,'timeOut',
timeout)

createOrderAndRouteWithStrat(___ ,'useDefaultEventHandler',false)

___ = createOrderAndRouteWithStrat(c,order,strat,options)

Description
events = createOrderAndRouteWithStrat(c,order,strat) creates and routes a
Bloomberg EMSX order with strategies using Bloomberg EMSX connection c, order
request order, and order strategy strat. createOrderAndRouteWithStrat returns
the order sequence number, route number, and status message using the default event
handler.

events = createOrderAndRouteWithStrat(c,order,strat,'timeOut',
timeout) specifies a timeout value timeout for the execution of the default event
handler.

createOrderAndRouteWithStrat(___ ,'useDefaultEventHandler',false)
creates and routes a Bloomberg EMSX order with strategies using any of the input
arguments in the previous syntaxes and a custom event handler. Write a custom event
handler to process the events associated with creating and routing orders. This syntax
does not have an output argument because the custom event handler processes the
contents of the event queue. If you want to use the default event handler instead, set the
flag 'useDefaultEventHandler' to true and use the events output argument. By
default, the flag 'useDefaultEventHandler' is set to true.

___ = createOrderAndRouteWithStrat(c,order,strat,options) uses the
options structure to customize the output, which is useful to preconfigure and save your

 createOrderAndRouteWithStrat

6-27

options for repeated use. The available options structure fields are timeOut and
useDefaultEventHandler. Use the events output argument when
useDefaultEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

Examples

Create and Route an Order Using the Default Event Handler

To create and route a Bloomberg EMSX order with strategies, create the connection c
using emsx and set up the order and route subscription using orders and routes. For
an example showing these activities, see “Manage a Bloomberg EMSX Order and Route”
on page 4-22.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Create and route the order with strategies using the Bloomberg EMSX connection c,
order, and strat.

events = createOrderAndRouteWithStrat(c,order,strat)

events =

6 Functions — Alphabetical List

6-28

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order created and routed'

The default event handler processes the events associated with creating and routing the
order. createOrderAndRouteWithStrat returns events as a structure that contains
these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Create and Route an Order Using a Timeout

To create and route a Bloomberg EMSX order with strategies, create the connection c
using emsx and set up the order and route subscription using orders and routes. For
an example showing these activities, see “Manage a Bloomberg EMSX Order and Route”
on page 4-22.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';

 createOrderAndRouteWithStrat

6-29

order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Create and route the order with strategies using the Bloomberg EMSX connection c,
order, and strat. Set the timeout value to 200 milliseconds.

events = createOrderAndRouteWithStrat(c,order,strat,'timeOut',200)

events =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order created and routed'

The default event handler processes the events associated with creating and routing the
order. createOrderAndRouteWithStrat returns events as a structure that contains
these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

6 Functions — Alphabetical List

6-30

Create and Route an Order Using a Custom Event Handler

To create and route a Bloomberg EMSX order with strategies, create the Bloomberg
EMSX connection c using emsx and set up the order and route subscription using
orders and routes. For an example showing these activities, see “Manage a Bloomberg
EMSX Order and Route” on page 4-22.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate')
start(t)

t is the MATLAB timer object. For details, see timer.

Create and route the order with strategies using the Bloomberg EMSX connection c,
order, and strat. Set the flag 'useDefaultEventHandler' to false so that
eventhandler processes the events associated with creating and routing an order.

createOrderAndRouteWithStrat(c,order,strat,...
 'useDefaultEventHandler',false)

 createOrderAndRouteWithStrat

6-31

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)

Create and Route an Order Using an Options Structure

To create and route a Bloomberg EMSX order with strategies, create the connection c
using emsx and set up the order and route subscription using orders and routes. For
an example showing these activities, see “Manage a Bloomberg EMSX Order and Route”
on page 4-22.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 100 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

6 Functions — Alphabetical List

6-32

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Create
and route the order using the Bloomberg EMSX connection c, order, strat, and options
structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = createOrderAndRouteWithStrat(c,order,strat,options)

events =

 EMSX_SEQUENCE: 728924
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order created and routed'

The default event handler processes the events associated with creating and routing the
order. createOrderAndRouteWithStrat returns events as a structure that contains
these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

 createOrderAndRouteWithStrat

6-33

order — Order request
structure

Order request, specified as a structure using Bloomberg EMSX field properties. Use
getAllFieldMetaData to view all available field property options for order. Convert
the number of shares to a 32-bit signed integer using int32. order contains these fields.

Field Description
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX amount of shares
EMSX_ORDER_TYPE Bloomberg EMSX order type
EMSX_BROKER Bloomberg EMSX broker name
EMSX_TIF Bloomberg EMSX time in force
EMSX_HAND_INSTRUCTION Bloomberg EMSX hand instruction
EMSX_SIDE Bloomberg EMSX buy or sell specification

Example: order.EMSX_TICKER = 'XYZ';
order.EMSX_AMOUNT = int32(100);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Data Types: struct

strat — Order strategies
structure

Order strategies, specified as a structure that contains the fields: EMSX_STRATEGY_NAME,
EMSX_STRATEGY_FIELD_INDICATORS, and EMSX_STRATEGY_FIELDS. The structure
field values must align with the strategy fields specified by EMSX_STRATEGY_NAME. For
details about strategy fields and ordering, see getBrokerInfo.

Convert EMSX_STRATEGY_FIELD_INDICATORS to a 32-bit signed integer using int32.
Set EMSX_STRATEGY_FIELD_INDICATORS equal to 0 for each field to use the field data
setting in EMSX_FIELD_DATA. Or, set EMSX_STRATEGY_FIELD_INDICATORS equal to 1
to ignore the data in EMSX_FIELD_DATA.
Example: strat.EMSX_STRATEGY_NAME = 'SSP';

6 Functions — Alphabetical List

6-34

strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.
Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.
Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments
events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

 createOrderAndRouteWithStrat

6-35

See Also
close | createOrder | delete | deleteOrder | deleteRoute | emsx |
getBrokerInfo | modifyOrder | orders | routeOrder | routes | start | stop |
timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

External Websites
EMSX API Programmers Guide

Introduced in R2013a

6 Functions — Alphabetical List

6-36

https://emsx-api-doc.readthedocs.io/en/latest/index.html

deleteOrder
Delete Bloomberg EMSX order

Syntax
events = deleteOrder(c,ordernum)
events = deleteOrder(c,ordernum,'timeOut',timeout)

deleteOrder(___ ,'useDefaultEventHandler',false)

___ = deleteOrder(c,ordernum,options)

Description
events = deleteOrder(c,ordernum) deletes a Bloomberg EMSX order using the
Bloomberg EMSX connection c and order number or structure ordernum. deleteOrder
returns a status message using the default event handler.

events = deleteOrder(c,ordernum,'timeOut',timeout) specifies a timeout
value timeout for the execution of the default event handler.

deleteOrder(___ ,'useDefaultEventHandler',false) deletes a Bloomberg
EMSX order using any of the input arguments in the previous syntaxes and a custom
event handler. Write a custom event handler to process the events associated with
deleting orders. This syntax does not have an output argument because the custom event
handler processes the contents of the event queue. If you want to use the default event
handler instead, set the flag 'useDefaultEventHandler' to true and use the events
output argument. By default, the flag 'useDefaultEventHandler' is set to true.

___ = deleteOrder(c,ordernum,options) uses the options structure to
customize the output, which is useful to preconfigure and save your options for repeated
use. The available options structure fields are timeOut and
useDefaultEventHandler. Use the events output argument when
useDefaultEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

 deleteOrder

6-37

Examples

Delete an Order Using the Default Event Handler

To delete a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page 4-
12.

Define the structure ordernum that contains the order sequence number
EMSX_SEQUENCE for the order to delete.

ordernum.EMSX_SEQUENCE = 335877;

Delete the order using the Bloomberg EMSX connection c and ordernum.

events = deleteOrder(c,ordernum)

events =

 STATUS: '0'
 MESSAGE: 'Order deleted'

The default event handler processes the events associated with deleting the order.
deleteOrder returns events as a structure that contains these fields:

• Bloomberg EMSX status
• Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

Delete an Order Using the Order Number Integer

To delete a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example

6 Functions — Alphabetical List

6-38

showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page 4-
12.

Delete the order using the Bloomberg EMSX connection c and the order sequence
number 335877 for the order to delete.

events = deleteOrder(c,335877)

events =

 STATUS: '0'
 MESSAGE: 'Order deleted'

The default event handler processes the events associated with deleting the order.
deleteOrder returns events as a structure that contains these fields:

• Bloomberg EMSX status
• Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

Delete an Order Using a Timeout

To delete a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page 4-
12.

Define the structure ordernum that contains the order sequence number
EMSX_SEQUENCE for the order to delete.

ordernum.EMSX_SEQUENCE = 335877;

Delete the order using the Bloomberg EMSX connection c and ordernum. Set the timeout
value to 200 milliseconds.

 deleteOrder

6-39

events = deleteOrder(c,ordernum,'timeOut',200)

events =

 STATUS: '0'
 MESSAGE: 'Order deleted'

The default event handler processes the events associated with deleting the order.
deleteOrder returns events as a structure that contains these fields:

• Bloomberg EMSX status
• Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

Delete an Order Using a Custom Event Handler

To delete a Bloomberg EMSX order, create the Bloomberg EMSX connection c using
emsx, set up the order subscription using orders, and create an order using
createOrder. For an example showing these activities, see “Create and Manage a
Bloomberg EMSX Order” on page 4-12.

Define the structure ordernum that contains the order sequence number
EMSX_SEQUENCE for the order to delete.

ordernum.EMSX_SEQUENCE = 335877;

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate')
start(t)

6 Functions — Alphabetical List

6-40

t is the MATLAB timer object. For details, see timer.

Delete the order using the Bloomberg EMSX connection c and ordernum. Set the flag
'useDefaultEventHandler' to false so that eventhandler processes the events
associated with deleting an order.

deleteOrder(c,ordernum,'useDefaultEventHandler',false)

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(subs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)

Delete an Order Using an Options Structure

To delete a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page 4-
12.

Define the structure ordernum that contains the order sequence number
EMSX_SEQUENCE for the order to delete.

ordernum.EMSX_SEQUENCE = 335877;

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Delete
the order using the Bloomberg EMSX connection c, ordernum, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = deleteOrder(c,ordernum,options)

 deleteOrder

6-41

events =

 STATUS: '0'
 MESSAGE: 'Order deleted'

The default event handler processes the events associated with deleting the order.
deleteOrder returns events as a structure that contains these fields:

• Bloomberg EMSX status
• Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

ordernum — Order numbers to delete
structure | integer

Order numbers to delete, specified as a structure or an integer to denote one or more
order sequence numbers.
Data Types: struct | int32

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.

6 Functions — Alphabetical List

6-42

Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.
Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments
events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

See Also
close | createOrder | createOrderAndRoute | delete | deleteRoute | emsx |
modifyOrder | orders | routeOrder | routes | start | stop | timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

 deleteOrder

6-43

External Websites
EMSX API Programmers Guide

Introduced in R2013a

6 Functions — Alphabetical List

6-44

https://emsx-api-doc.readthedocs.io/en/latest/index.html

deleteRoute
Delete Bloomberg EMSX active shares

Syntax
events = deleteRoute(c,routenum)
events = deleteRoute(c,routenum,'timeOut',timeout)

deleteRoute(___ ,'useDefaultEventHandler',false)

___ = deleteRoute(c,routenum,options)

Description
events = deleteRoute(c,routenum) deletes the active shares that are routed but
not filled using the Bloomberg EMSX connection c and route number routenum.
deleteRoute returns a status message using the default event handler.

events = deleteRoute(c,routenum,'timeOut',timeout) specifies a timeout
value timeout for the execution of the default event handler.

deleteRoute(___ ,'useDefaultEventHandler',false) deletes the active shares
that are routed but not filled using any of the input arguments in the previous syntaxes
and a custom event handler. Write a custom event handler to process the events
associated with deleting the active shares. This syntax does not have an output argument
because the custom event handler processes the contents of the event queue. If you want
to use the default event handler instead, set the flag 'useDefaultEventHandler' to
true and use the events output argument. By default, the flag
'useDefaultEventHandler' is set to true.

___ = deleteRoute(c,routenum,options) uses the options structure to
customize the output, which is useful to preconfigure and save your options for repeated
use. The available options structure fields are timeOut and
useDefaultEventHandler. Use the events output argument when
useDefaultEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

 deleteRoute

6-45

Examples

Delete Active Shares

To delete the active shares that are routed but not filled for a Bloomberg EMSX order:

1 Create the connection c using emsx.
2 Set up an order and route subscription using orders and routes.
3 Create and route an order using createOrderAndRoute.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Route” on page 4-17.

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE_ID.

routenum.EMSX_SEQUENCE = 335877;
routenum.EMSX_ROUTE_ID = 1;

Delete the active shares that are routed but not filled using the Bloomberg EMSX
connection c and routenum.

events = deleteRoute(c,routenum)

events =

 STATUS: '1'
 MESSAGE: 'Route cancellation request sent to broker'

The default event handler processes the events associated with deleting the active shares.
deleteRoute returns events as a structure that contains these fields:

• Bloomberg EMSX status
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

6 Functions — Alphabetical List

6-46

Close the Bloomberg EMSX connection.

close(c)

Delete Active Shares Using a Timeout

To delete the active shares that are routed but not filled for a Bloomberg EMSX order:

1 Create the connection c using emsx.
2 Set up an order and route subscription using orders and routes.
3 Create and route an order using createOrderAndRoute.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Route” on page 4-17.

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE_ID.

routenum.EMSX_SEQUENCE = 335877;
routenum.EMSX_ROUTE_ID = 1;

Delete the active shares that are routed but not filled using the Bloomberg EMSX
connection c and routenum. Set the timeout value to 200 milliseconds.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = deleteRoute(c,routenum,'timeOut',200)

events =

 STATUS: '1'
 MESSAGE: 'Route cancellation request sent to broker'

The default event handler processes the events associated with deleting the active shares.
deleteRoute returns events as a structure that contains these fields:

• Bloomberg EMSX status
• Bloomberg EMSX message

 deleteRoute

6-47

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Delete Active Shares Using a Custom Event Handler

To delete the active shares that are routed but not filled for a Bloomberg EMSX order:

1 Create the Bloomberg EMSX connection c using emsx.
2 Set up an order and route subscription using orders and routes.
3 Create and route an order using createOrderAndRoute.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Route” on page 4-17.

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE_ID.

routenum.EMSX_SEQUENCE = 335877;
routenum.EMSX_ROUTE_ID = 1;

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate')
start(t)

t is the MATLAB timer object. For details, see timer.

Delete the active shares that are routed but not filled using the Bloomberg EMSX
connection c and routenum. Set the flag 'useDefaultEventHandler' to false so
that eventhandler processes the events associated with deleting the active shares.

6 Functions — Alphabetical List

6-48

deleteRoute(c,routenum,'useDefaultEventHandler',false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)

Delete Active Shares Using an Options Structure

To delete the active shares that are routed but not filled for a Bloomberg EMSX order:

1 Create the connection c using emsx.
2 Set up an order and route subscription using orders and routes.
3 Create and route an order using createOrderAndRoute.

For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Route” on page 4-17.

Define the structure routenum that contains the order sequence number
EMSX_SEQUENCE for the routed order and route number EMSX_ROUTE_ID.

routenum.EMSX_SEQUENCE = 335877;
routenum.EMSX_ROUTE_ID = 1;

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Delete
the active shares that are routed but not filled using the Bloomberg EMSX connection c,
routenum, and options structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

 deleteRoute

6-49

events = deleteRoute(c,routenum,options)

events =

 STATUS: '1'
 MESSAGE: 'Route cancellation request sent to broker'

The default event handler processes the events associated with deleting the active shares.
deleteRoute returns events as a structure that contains these fields:

• Bloomberg EMSX status
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

routenum — Route to delete
structure

Route to delete, specified as a structure containing fields EMSX_SEQUENCE and
EMSX_ROUTE_ID.
Example: routenum.EMSX_SEQUENCE = 728918;
routenum.EMSX_ROUTE_ID = 1;

Data Types: struct

6 Functions — Alphabetical List

6-50

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.
Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.
Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments
events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

See Also
close | createOrder | createOrderAndRoute | delete | deleteOrder | emsx |
modifyOrder | modifyRoute | orders | routeOrder | routes | start | stop | timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12

 deleteRoute

6-51

“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

External Websites
EMSX API Programmers Guide

Introduced in R2013a

6 Functions — Alphabetical List

6-52

https://emsx-api-doc.readthedocs.io/en/latest/index.html

getAllFieldMetaData
Obtain Bloomberg EMSX field information

Syntax
r = getAllFieldMetaData(c)

Description
r = getAllFieldMetaData(c) returns the Bloomberg EMSX field information using
the Bloomberg EMSX connection c.

Examples

Request All Field Information

Create a connection c to the Bloomberg EMSX.

 c = emsx('//blp/emapisvc_beta');

Request all fields supported by Bloomberg EMSX service using the Bloomberg EMSX
connection c.

 r = getAllFieldMetaData(c)

 r =

 EMSX_FIELD_NAME: {113x1 cell}
 EMSX_DISP_NAME: {113x1 cell}
 EMSX_TYPE: {113x1 cell}
 EMSX_LEVEL: [113x1 double]
 EMSX_LEN: [113x1 double]

Display all field information for the first Bloomberg EMSX field using a cell array. Create
a cell array from the fields in the returned data structure r.

 getAllFieldMetaData

6-53

{r.EMSX_FIELD_NAME{1} r.EMSX_DISP_NAME{1} r.EMSX_TYPE{1} r.EMSX_LEVEL(1) r.EMSX_LEN(1)}

 'MSG_TYPE' 'Msg Type' 'String' [0] [1]

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

Output Arguments
r — Return information for all fields
structure

Return information for all fields, returned as a structure for all fields supported by
Bloomberg EMSX.

See Also
close | createOrder | createOrderAndRoute | createOrderAndRouteWithStrat |
emsx

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2

External Websites
EMSX API Programmers Guide

6 Functions — Alphabetical List

6-54

https://emsx-api-doc.readthedocs.io/en/latest/index.html

Introduced in R2013a

 getAllFieldMetaData

6-55

getBrokerInfo
Obtain Bloomberg EMSX broker and strategy information

Syntax
r = getBrokerInfo(c,brokerstrat)

Description
r = getBrokerInfo(c,brokerstrat) obtains Bloomberg EMSX broker and strategy
information using the Bloomberg EMSX connection c and broker and strategy request
structure brokerstrat.

Examples

Obtain Broker Information

Create a connection c to the Bloomberg EMSX.

 c = emsx('//blp/emapisvc_beta');

Define the broker and strategy information structure brokerstrat. Obtain broker
information using the Bloomberg EMSX connection c and structure brokerstrat.

brokerstrat.EMSX_TICKER = 'ABCD US Equity';

r = getBrokerInfo(c,brokerstrat)

 r =

 EMSX_BROKERS: {2x1 cell}

The EMSX_BROKERS field lists the Bloomberg EMSX brokers.

Close the Bloomberg EMSX connection.

6 Functions — Alphabetical List

6-56

close(c)

Obtain Strategy Information

Create a connection c to the Bloomberg EMSX.

 c = emsx('//blp/emapisvc_beta');

Define the broker and strategy information structure brokerstrat. Obtain strategy
information using the Bloomberg EMSX connection c and structure brokerstrat.

brokerstrat.EMSX_TICKER = 'ABCD US Equity';
brokerstrat.EMSX_BROKER = 'BMTB';

r = getBrokerInfo(c,brokerstrat)

 r =

 EMSX_STRATEGIES: {16x1 cell}

The EMSX_STRATEGIES field lists the Bloomberg EMSX strategies.

Close the Bloomberg EMSX connection.

close(c)

Obtain Field Information

Create a connection c to the Bloomberg EMSX.

 c = emsx('//blp/emapisvc_beta');

Define the broker and strategy information structure brokerstrat. Obtain field
information using the Bloomberg EMSX connection c and structure brokerstrat.

brokerstrat.EMSX_TICKER = 'ABCD US Equity';
brokerstrat.EMSX_BROKER = 'BMTB';
brokerstrat.EMSX_STRATEGY = 'SSP';

r = getBrokerInfo(c,brokerstrat)

 getBrokerInfo

6-57

r =

 FieldName: {3x1 cell}
 Disable: {3x1 cell}
 StringValue: {3x1 cell}

The structure field FieldName lists the Bloomberg EMSX fields. The structure fields
Disable and StringValue contain information about the Bloomberg EMSX fields.

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

brokerstrat — Broker and strategy request
structure

Broker and strategy request, specified as a structure that contains Bloomberg EMSX
fields. Use getAllFieldMetaData to view all available fields for
brokerStrategyStruct.
Example: brokerstrat.EMSX_TICKER = 'ABCD US Equity';
Data Types: struct

Output Arguments
r — Broker and strategy information
structure

Broker and strategy information, returned as a structure.

6 Functions — Alphabetical List

6-58

See Also
close | createOrder | createOrderAndRoute | createOrderAndRouteWithStrat |
deleteOrder | deleteRoute | emsx | modifyOrder | orders | routeOrder | routes

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2

External Websites
EMSX API Programmers Guide

Introduced in R2013a

 getBrokerInfo

6-59

https://emsx-api-doc.readthedocs.io/en/latest/index.html

modifyOrder
Modify Bloomberg EMSX order

Syntax
events = modifyOrder(c,modorder)
events = modifyOrder(c,modorder,'timeOut',timeout)

modifyOrder(___ ,'useDefaultEventHandler',false)

___ = modifyOrder(c,modorder,options)

Description
events = modifyOrder(c,modorder) modifies a Bloomberg EMSX order using the
Bloomberg EMSX connection c and modify order request structure modorder.
modifyOrder returns a status message using the default event handler.

events = modifyOrder(c,modorder,'timeOut',timeout) specifies a timeout
value timeout for the execution of the default event handler.

modifyOrder(___ ,'useDefaultEventHandler',false) modifies a Bloomberg
EMSX order using any of the input arguments in the previous syntaxes and a custom
event handler. Write a custom event handler to process the events associated with
modifying orders. This syntax does not have an output argument because the custom
event handler processes the contents of the event queue. If you want to use the default
event handler instead, set the flag 'useDefaultEventHandler' to true and use the
events output argument. By default, the flag 'useDefaultEventHandler' is set to
true.

___ = modifyOrder(c,modorder,options) uses the options structure to
customize the output, which is useful to preconfigure and save your options for repeated
use. The available options structure fields are timeOut and
useDefaultEventHandler. Use the events output argument when the flag
useDefaultEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

6 Functions — Alphabetical List

6-60

Examples

Modify an Order Using the Default Event Handler

To modify a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page 4-
12.

Define the structure modorder that contains the order sequence number
EMSX_SEQUENCE, the security EMSX_TICKER, and the number of shares EMSX_AMOUNT.
This code modifies the order number 728905 for 200 shares of IBM. Convert the numbers
to 32-bit signed integers using int32.

modorder.EMSX_SEQUENCE = int32(728905);
modorder.EMSX_TICKER = 'IBM';
modorder.EMSX_AMOUNT = int32(200);

Modify the order using the Bloomberg EMSX connection c and modorder.

events = modifyOrder(c,modorder)

events =

 EMSX_SEQUENCE: 728905
 MESSAGE: 'Order Modified'

The default event handler processes the events associated with modifying the order.
modifyOrder returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

 modifyOrder

6-61

Modify an Order Using a Timeout

To modify a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page 4-
12.

Define the structure modorder that contains the order sequence number
EMSX_SEQUENCE, the security EMSX_TICKER, and the number of shares EMSX_AMOUNT.
This code modifies the order number 728905 for 200 shares of IBM. Convert the numbers
to 32-bit signed integers using int32.

modorder.EMSX_SEQUENCE = int32(728905);
modorder.EMSX_TICKER = 'IBM';
modorder.EMSX_AMOUNT = int32(200);

Modify the order using the Bloomberg EMSX connection c and modorder. Set the
timeout value to 200 milliseconds.

events = modifyOrder(c,modorder,'timeOut',200)

events =

 EMSX_SEQUENCE: 728905
 MESSAGE: 'Order Modified'

The default event handler processes the events associated with modifying the order.
modifyOrder returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX message

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

6 Functions — Alphabetical List

6-62

Modify an Order Using a Custom Event Handler

To modify a Bloomberg EMSX order, create the Bloomberg EMSX connection c using
emsx, set up the order subscription using orders, and create an order using
createOrder. For an example showing these activities, see “Create and Manage a
Bloomberg EMSX Order” on page 4-12.

Define the structure modorder that contains the order sequence number
EMSX_SEQUENCE, the security EMSX_TICKER, and the number of shares EMSX_AMOUNT.
This code modifies the order number 728905 for 200 shares of IBM. Convert the numbers
to 32-bit signed integers using int32.

modorder.EMSX_SEQUENCE = int32(728905);
modorder.EMSX_TICKER = 'IBM';
modorder.EMSX_AMOUNT = int32(200);

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate')
start(t)

t is the MATLAB timer object. For details, see timer.

Modify the order using the Bloomberg EMSX connection c and modorder. Set the flag
'useDefaultEventHandler' to false so that eventhandler processes the events
associated with modifying an order.

modifyOrder(c,modorder,'useDefaultEventHandler',false)

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs. Stop the timer to stop data updates using
stop.

c.Session.unsubscribe(subs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

 modifyOrder

6-63

Close the Bloomberg EMSX connection.

close(c)

Modify an Order Using an Options Structure

To modify a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create an order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page 4-
12.

Define the structure modorder that contains the order sequence number
EMSX_SEQUENCE, the security EMSX_TICKER, and the number of shares EMSX_AMOUNT.
This code modifies the order number 728905 for 200 shares of IBM. Convert the numbers
to 32-bit signed integers using int32.

modorder.EMSX_SEQUENCE = int32(728905);
modorder.EMSX_TICKER = 'IBM';
modorder.EMSX_AMOUNT = int32(200);

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Modify
the order using the Bloomberg EMSX connection c, modorder, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = modifyOrder(c,modorder,options)

events =

 EMSX_SEQUENCE: 728905
 MESSAGE: 'Order Modified'

The default event handler processes the events associated with modifying the order.
modifyOrder returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX message

6 Functions — Alphabetical List

6-64

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
This code assumes that orders creates subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

modorder — Modify order request
structure

Modify order request, specified as a structure that contains these fields.

Use getAllFieldMetaData to view all available fields for modorder. Convert the
numbers to 32-bit signed integers using int32.

Field Description
EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares

Example: modorder.EMSX_SEQUENCE = int32(728905);
modorder.EMSX_TICKER = 'XYZ';
modorder.EMSX_AMOUNT = int32(100);

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

 modifyOrder

6-65

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.
Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.
Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments
events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

See Also
close | createOrder | createOrderAndRoute | createOrderAndRouteWithStrat |
delete | deleteOrder | deleteRoute | emsx | orders | routeOrder | routes |
start | stop | timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22

6 Functions — Alphabetical List

6-66

“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

External Websites
EMSX API Programmers Guide

Introduced in R2013a

 modifyOrder

6-67

https://emsx-api-doc.readthedocs.io/en/latest/index.html

modifyRoute
Modify Bloomberg EMSX route

Syntax
events = modifyRoute(c,modroute)
events = modifyRoute(c,modroute,'timeOut',timeout)

modifyRoute(___ ,'useDefaultEventHandler',false)

___ = modifyRoute(c,modroute,options)

Description
events = modifyRoute(c,modroute) modifies a Bloomberg EMSX route using the
Bloomberg EMSX connection c and route request modroute. modifyRoute returns a
status message using the default event handler.

events = modifyRoute(c,modroute,'timeOut',timeout) specifies a timeout
value timeout for the execution of the default event handler.

modifyRoute(___ ,'useDefaultEventHandler',false) modifies a Bloomberg
EMSX route using any of the input arguments in the previous syntaxes and a custom
event handler. Write a custom event handler to process the events associated with
modifying routes. This syntax does not have an output argument because the custom
event handler processes the contents of the event queue. If you want to use the default
event handler instead, set the flag 'useDefaultEventHandler' to true and use the
events output argument. By default, the flag 'useDefaultEventHandler' is set to
true.

___ = modifyRoute(c,modroute,options) uses the options structure to
customize the output, which is useful to preconfigure and save your options for repeated
use. The available options structure fields are timeOut and
useDefaultEventHandler. Use the events output argument when the flag
useDefaultEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

6 Functions — Alphabetical List

6-68

Examples

Modify a Route Using the Default Event Handler

To modify a route for a Bloomberg EMSX order:

• Create the connection c using emsx.
• Set up the order and route subscription using orders and routes.
• Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-22.

Define the modroute structure that contains these fields:

• Bloomberg EMSX order sequence number EMSX_SEQUENCE
• Bloomberg EMSX ticker symbol EMSX_TICKER
• Bloomberg EMSX number of shares EMSX_AMOUNT
• Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code instructs Bloomberg EMSX to route 100 shares of IBM for order sequence
number 731128 and route identifier 1. Convert the numbers to 32-bit signed integers
using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute.EMSX_TICKER = 'IBM';
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Modify the route using the Bloomberg EMSX connection c and modroute.

events = modifyRoute(c,modroute)

events =

 EMSX_SEQUENCE: 0
 EMSX_ROUTE_ID: 0
 MESSAGE: 'Route modified'

The default event handler processes the events associated with modifying a route.
modifyRoute returns events as a structure that contains these fields:

 modifyRoute

6-69

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Modify a Route Using a Timeout

To modify a route for a Bloomberg EMSX order:

• Create the connection c using emsx.
• Set up the order and route subscription using orders and routes.
• Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-22.

Define the modroute structure that contains these fields:

• Bloomberg EMSX order sequence number EMSX_SEQUENCE
• Bloomberg EMSX ticker symbol EMSX_TICKER
• Bloomberg EMSX number of shares EMSX_AMOUNT
• Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute.EMSX_TICKER = 'IBM';
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

6 Functions — Alphabetical List

6-70

Modify the route using the Bloomberg EMSX connection c and modroute. Set the
timeout value to 200 milliseconds.

events = modifyRoute(c,modroute,'timeOut',200)

events =

 EMSX_SEQUENCE: 0
 EMSX_ROUTE_ID: 0
 MESSAGE: 'Route modified'

The default event handler processes the events associated with modifying a route.
modifyRoute returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Modify a Route Using a Custom Event Handler

To modify a route for a Bloomberg EMSX order:

• Create the connection c using emsx.
• Set up the order and route subscription using orders and routes.
• Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-22.

Define the modroute structure that contains these fields:

 modifyRoute

6-71

• Bloomberg EMSX order sequence number EMSX_SEQUENCE
• Bloomberg EMSX ticker symbol EMSX_TICKER
• Bloomberg EMSX number of shares EMSX_AMOUNT
• Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute.EMSX_TICKER = 'IBM';
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate')
start(t)

t is the MATLAB timer object. For details, see timer.

Modify the route using the Bloomberg EMSX connection c and modroute. Set the flag
'useDefaultEventHandler' to false so that eventhandler processes the events
associated with modifying a route.

modifyRoute(c,modroute,'useDefaultEventHandler',false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

6 Functions — Alphabetical List

6-72

close(c)

Modify a Route Using an Options Structure

To modify a route for a Bloomberg EMSX order:

• Create the connection c using emsx.
• Set up the order and route subscription using orders and routes.
• Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-22.

Define the modroute structure that contains these fields:

• Bloomberg EMSX order sequence number EMSX_SEQUENCE
• Bloomberg EMSX ticker symbol EMSX_TICKER
• Bloomberg EMSX number of shares EMSX_AMOUNT
• Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute.EMSX_TICKER = 'IBM';
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Modify
the route using the Bloomberg EMSX connection c, modroute, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = modifyRoute(c,modroute,options)

events =

 modifyRoute

6-73

 EMSX_SEQUENCE: 0
 EMSX_ROUTE_ID: 0
 MESSAGE: 'Route modified'

The default event handler processes the events associated with modifying a route.
modifyRoute returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

modroute — Modify route request
structure

Modify route request, specified as a structure with these fields.

Use getAllFieldMetaData to view all available fields for modroute. Convert the
numbers to 32-bit signed integers using int32.

Field Description
EMSX_SEQUENCE Bloomberg EMSX order sequence number

6 Functions — Alphabetical List

6-74

Field Description
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_ROUTE_ID Bloomberg EMSX route identifier

Example: modroute.EMSX_SEQUENCE = int32(731128);
modroute.EMSX_TICKER = 'XYZ';
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.
Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.
Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Output Arguments
events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

 modifyRoute

6-75

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

See Also
createOrder | createOrderAndRoute | delete | deleteOrder |
modifyRouteWithStrat | orders | routes | start | stop | timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

External Websites
EMSX API Programmers Guide

Introduced in R2013a

6 Functions — Alphabetical List

6-76

https://emsx-api-doc.readthedocs.io/en/latest/index.html

modifyRouteWithStrat
Modify Bloomberg EMSX route with strategies

Syntax
events = modifyRouteWithStrat(c,modroute,strat)
events = modifyRouteWithStrat(c,modroute,strat,'timeOut',timeout)

modifyRouteWithStrat(___ ,'useDefaultEventHandler',false)

___ = modifyRouteWithStrat(c,modroute,strat,options)

Description
events = modifyRouteWithStrat(c,modroute,strat) modifies a Bloomberg
EMSX route with strategies using the Bloomberg EMSX connection c, route request
modroute, and order strategy strat. modifyRouteWithStrat returns the order
sequence number, route identifier, and status message using the default event handler.

events = modifyRouteWithStrat(c,modroute,strat,'timeOut',timeout)
specifies a timeout value timeout for the execution of the default event handler.

modifyRouteWithStrat(___ ,'useDefaultEventHandler',false) modifies a
Bloomberg EMSX route with strategies using any of the input arguments in the previous
syntaxes and a custom event handler. Write a custom event handler to process the events
associated with modifying routes. This syntax does not have an output argument because
the custom event handler processes the contents of the event queue. If you want to use
the default event handler instead, set the flag 'useDefaultEventHandler' to true
and use the events output argument. By default, the flag 'useDefaultEventHandler'
is set to true.

___ = modifyRouteWithStrat(c,modroute,strat,options) uses the options
structure to customize the output, which is useful to preconfigure and save your options
for repeated use. The available options structure fields are timeOut and
useDefaultEventHandler. Use the events output argument when the flag

 modifyRouteWithStrat

6-77

useDefaultEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

Examples

Modify a Route with Strategies Using the Default Event Handler

To modify a route for a Bloomberg EMSX order with strategies:

• Create the connection c using emsx.
• Set up the order and route subscription using orders and routes.
• Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-22.

Define the modroute structure that contains these fields:

• Bloomberg EMSX order sequence number EMSX_SEQUENCE
• Bloomberg EMSX ticker symbol EMSX_TICKER
• Bloomberg EMSX number of shares EMSX_AMOUNT
• Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute.EMSX_TICKER = 'IBM';
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Modify the route using the Bloomberg EMSX connection c, modroute, and strat.

6 Functions — Alphabetical List

6-78

events = modifyRouteWithStrat(c,modroute,strat)

events =

 EMSX_SEQUENCE: 0
 EMSX_ROUTE_ID: 0
 MESSAGE: 'Route modified'

The default event handler processes the events associated with modifying a route.
modifyRouteWithStrat returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Modify a Route with Strategies Using a Timeout

To modify a route for a Bloomberg EMSX order with strategies:

• Create the connection c using emsx.
• Set up the order and route subscription using orders and routes.
• Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-22.

Define the modroute structure that contains these fields:

• Bloomberg EMSX order sequence number EMSX_SEQUENCE

 modifyRouteWithStrat

6-79

• Bloomberg EMSX ticker symbol EMSX_TICKER
• Bloomberg EMSX number of shares EMSX_AMOUNT
• Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute.EMSX_TICKER = 'IBM';
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Modify the route using the Bloomberg EMSX connection c, modroute, and strat. Set
the timeout value to 200 milliseconds.

events = modifyRouteWithStrat(c,modroute,strat,'timeOut',200)

events =

 EMSX_SEQUENCE: 0
 EMSX_ROUTE_ID: 0
 MESSAGE: 'Route modified'

The default event handler processes the events associated with modifying a route.
modifyRouteWithStrat returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

6 Functions — Alphabetical List

6-80

Close the Bloomberg EMSX connection.

close(c)

Modify a Route with Strategies Using a Custom Event Handler

To modify a route for a Bloomberg EMSX order with strategies:

• Create the connection c using emsx.
• Set up the order and route subscription using orders and routes.
• Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-22.

Define the modroute structure that contains these fields:

• Bloomberg EMSX order sequence number EMSX_SEQUENCE
• Bloomberg EMSX ticker symbol EMSX_TICKER
• Bloomberg EMSX number of shares EMSX_AMOUNT
• Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute.EMSX_TICKER = 'IBM';
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

 modifyRouteWithStrat

6-81

t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate')
start(t)

t is the MATLAB timer object. For details, see timer.

Modify the route using the Bloomberg EMSX connection c, modroute, and strat. Set
the flag 'useDefaultEventHandler' to false so that eventhandler processes the
events associated with modifying a route.

modifyRouteWithStrat(c,modroute,strat,'useDefaultEventHandler',false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)

Modify a Route with Strategies Using an Options Structure

To modify a route for a Bloomberg EMSX order with strategies:

• Create the connection c using emsx.
• Set up the order and route subscription using orders and routes.
• Create and route the order using createOrderAndRoute.

For an example showing these activities, see “Manage a Bloomberg EMSX Order and
Route” on page 4-22.

Define the modroute structure that contains these fields:

6 Functions — Alphabetical List

6-82

• Bloomberg EMSX order sequence number EMSX_SEQUENCE
• Bloomberg EMSX ticker symbol EMSX_TICKER
• Bloomberg EMSX number of shares EMSX_AMOUNT
• Bloomberg EMSX route identifier EMSX_ROUTE_ID

This code modifies the route to 100 shares of IBM for order sequence number 731128
and route identifier 1. Convert the numbers to 32-bit signed integers using int32.

modroute.EMSX_SEQUENCE = int32(731128)
modroute.EMSX_TICKER = 'IBM';
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Modify
the route using the Bloomberg EMSX connection c, modroute, strat, and options
structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = modifyRouteWithStrat(c,modroute,strat,options)

events =

 EMSX_SEQUENCE: 0
 EMSX_ROUTE_ID: 0
 MESSAGE: 'Route modified'

The default event handler processes the events associated with modifying a route.
modifyRouteWithStrat returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

 modifyRouteWithStrat

6-83

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

modroute — Modify route request
structure

Modify route request, specified as a structure with these fields.

Use getAllFieldMetaData to view all available fields for modroute. Convert the
numbers to 32-bit signed integers using int32.

Field Description
EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_ROUTE_ID Bloomberg EMSX route identifier

Example: modroute.EMSX_SEQUENCE = int32(731128);
modroute.EMSX_TICKER = 'XYZ';
modroute.EMSX_AMOUNT = int32(100);
modroute.EMSX_ROUTE_ID = int32(1);

Data Types: struct

6 Functions — Alphabetical List

6-84

strat — Order strategies
structure

Order strategies, specified as a structure that contains the fields: EMSX_STRATEGY_NAME,
EMSX_STRATEGY_FIELD_INDICATORS, and EMSX_STRATEGY_FIELDS. The structure
field values must align with the strategy fields specified by EMSX_STRATEGY_NAME. For
details about strategy fields and ordering, see getBrokerInfo.

Convert EMSX_STRATEGY_FIELD_INDICATORS to a 32-bit signed integer using int32.
Set EMSX_STRATEGY_FIELD_INDICATORS equal to 0 for each field to use the field data
setting in EMSX_FIELD_DATA. Or, set EMSX_STRATEGY_FIELD_INDICATORS equal to 1
to ignore the data in EMSX_FIELD_DATA.
Example: strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.
Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.
Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

 modifyRouteWithStrat

6-85

Output Arguments
events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

See Also
createOrder | createOrderAndRouteWithStrat | delete | deleteOrder |
getBrokerInfo | modifyRoute | orders | routeOrder | routes | start | stop |
timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

External Websites
EMSX API Programmers Guide

Introduced in R2013a

6 Functions — Alphabetical List

6-86

https://emsx-api-doc.readthedocs.io/en/latest/index.html

orders
Obtain Bloomberg EMSX order subscription

Syntax
[events,subs] = orders(c,fields)

[events,subs] = orders(c,fields,Name,Value)
[events,subs] = orders(c,fields,options)

Description
[events,subs] = orders(c,fields) subscribes to Bloomberg EMSX fields fields
using the Bloomberg EMSX connection c. orders returns existing event data events
from the event queue and the Bloomberg EMSX subscription list subs.

[events,subs] = orders(c,fields,Name,Value) uses additional options specified
by one or more Name,Value pair arguments to specify a custom event handler or timeout
value for the event handler.

[events,subs] = orders(c,fields,options) uses the options structure to
customize the output, which is useful to preconfigure and save your options for repeated
use. The options structure fields and values correspond to names and values of name-
value pair arguments, respectively.

Examples

Subscribe to Order Events Using the Default Event Handler

Create the Bloomberg EMSX connection c.

 c = emsx('//blp/emapisvc_beta');

 orders

6-87

Subscribe to events for Bloomberg EMSX orders using the Bloomberg EMSX connection c
and Bloomberg EMSX field list fields.

fields = {'EMSX_BROKER','EMSX_AMOUNT','EMSX_FILLED'};

[events,subs] = orders(c,fields)

events =

 MSG_TYPE: {'E'}
 MSG_SUB_TYPE: {'O'}
 EVENT_STATUS: 4
 ...

subs =

com.bloomberglp.blpapi.SubscriptionList@4bc3dc78

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

Subscribe to Order Events Using the Custom Event Handler

Create the Bloomberg EMSX connection c.

 c = emsx('//blp/emapisvc_beta');

Write a custom event handler function named eventhandler. Run the custom event
handler using timer. Start the timer to run eventhandler immediately using start.
For details, see “Writing and Running Custom Event Handler Functions with Bloomberg
EMSX” on page 1-25.
t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate');
start(t)

6 Functions — Alphabetical List

6-88

t is the timer object.

Subscribe to events for Bloomberg EMSX orders using the Bloomberg EMSX connection c
and Bloomberg EMSX field list fields. Use the custom event handler by setting the
name-value pair argument 'useDefaultEventHandler' to false.
fields = {'EMSX_BROKER','EMSX_AMOUNT','EMSX_FILLED'};

[events,subs] = orders(c,fields,'useDefaultEventHandler',false)

events =

 []

subs =

com.bloomberglp.blpapi.SubscriptionList@2c5b1c7e

events contains an empty double. The custom event handler processes the event queue.
subs contains the Bloomberg EMSX subscription list object.

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.
Stop the timer to stop data updates using stop.

c.Session.unsubscribe(subs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)

Subscribe to Order Events Using a Timeout

Create the Bloomberg EMSX connection c.

 c = emsx('//blp/emapisvc_beta');

 orders

6-89

Subscribe to events for Bloomberg EMSX orders using the Bloomberg EMSX connection c
and Bloomberg EMSX field list fields. Specify the name-value pair argument timeOut
and set it to 200 milliseconds.
fields = {'EMSX_BROKER','EMSX_AMOUNT','EMSX_FILLED'};

[events,subs] = orders(c,fields,'timeOut',200)

events =

 MSG_TYPE: {'E'}
 MSG_SUB_TYPE: {'O'}
 EVENT_STATUS: 4
 ...

subs =

com.bloomberglp.blpapi.SubscriptionList@4bc3dc78

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

Subscribe to Order Events Using the Options Structure

Create the Bloomberg EMSX connection c.

 c = emsx('//blp/emapisvc_beta');

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds.
Subscribe to events for Bloomberg EMSX orders using the Bloomberg EMSX connection
c, Bloomberg EMSX field list fields, and options structure options.
options.timeOut = 200;
options.useDefaultEventHandler = true;

6 Functions — Alphabetical List

6-90

fields = {'EMSX_BROKER','EMSX_AMOUNT','EMSX_FILLED'};

[events,subs] = orders(c,fields,options)

events =

 MSG_TYPE: {'E'}
 MSG_SUB_TYPE: {'O'}
 EVENT_STATUS: 4
 ...

subs =

com.bloomberglp.blpapi.SubscriptionList@4bc3dc78

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from order events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

fields — Bloomberg EMSX field information
cell array

Bloomberg EMSX field information, specified using a cell array. Use
getAllFieldMetaData to view available field information for the Bloomberg EMSX
service.
Example: 'EMSX_TICKER'
'EMSX_AMOUNT'

 orders

6-91

'EMSX_ORDER_TYPE'

Data Types: cell

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. Use the
options structure instead of name-value pair arguments to reuse the optional name-value
pair arguments to specify a custom event handler or timeout value for the event handler.

The options structure field and values correspond to names and values of the name-
value pair arguments, respectively.

Specify using a custom event handler and a timeout value of 500 milliseconds.
Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'useDefaultEventHandler',false

useDefaultEventHandler — Flag for event handler preference
true (default) | false

Flag for event handler preference, indicating whether to use the default or custom event
handler to process order events, specified as the comma-separated pair consisting of
'useDefaultEventHandler' and the logical values true or false.

To specify the default event handler, set this flag to true.

Otherwise, set this flag to false to specify a custom event handler.
Data Types: logical

6 Functions — Alphabetical List

6-92

timeOut — Timeout value for event handler
500 milliseconds (default) | nonnegative integer

Timeout value for event handler for the Bloomberg EMSX service, specified as the
comma-separated pair consisting of 'timeOut' and a nonnegative integer in units of
milliseconds.
Example: 'timeOut',200
Data Types: double

Output Arguments
events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

When the name-value pair argument 'useDefaultEventHandler' or the same field for
the structure options is set to false, events is an empty double.

subs — Bloomberg EMSX subscription list
subscription list object

Bloomberg EMSX subscription list, returned as a Bloomberg EMSX subscription list
object.

See Also
close | createOrder | createOrderAndRoute | createOrderAndRouteWithStrat |
delete | deleteOrder | deleteRoute | emsx | getAllFieldMetaData |
modifyOrder | routeOrder | routes | start | stop | timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22

 orders

6-93

“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

External Websites
EMSX API Programmers Guide

Introduced in R2013a

6 Functions — Alphabetical List

6-94

https://emsx-api-doc.readthedocs.io/en/latest/index.html

emsxOrderBlotter
Bloomberg EMSX example order blotter

Syntax
[t,subs] = emsxOrderBlotter(c)

Description
[t,subs] = emsxOrderBlotter(c) displays a trader's order information. c is the
Bloomberg EMSX connection, t is the timer object associated with the event handler, and
subs is the Bloomberg EMSX subscription list.

Examples

Display the Order in an Order Blotter

Create the Bloomberg EMSX connection c.

 c = emsx('//blp/emapisvc_beta');

Open Bloomberg EMSX order blotter using the Bloomberg EMSX connection c.

[t,subs] = emsxOrderBlotter(c)

 Timer Object: timer-1

 Timer Settings
 ExecutionMode: fixedRate
 Period: 1
 BusyMode: drop
 Running: on

 Callbacks
 TimerFcn: {@processEventToBlotter [1x1 emsx]}

 emsxOrderBlotter

6-95

 ErrorFcn: ''
 StartFcn: ''
 StopFcn: ''

subs =

com.bloomberglp.blpapi.SubscriptionList@3e24da58

emsxOrderBlotter returns the timer object output and the Bloomberg EMSX
subscription list object. For details about the timer object, see timer.

The order blotter displays the current order information for a trader.

Create the order request structure order to define the order parameters. This code
creates a buy market order for 330 shares of IBM. This code uses the broker BB with the
time in force set to DAY and any hand instruction. Convert the number of shares to a 32-
bit signed integer using int32.

order.EMSX_TICKER = 'IBM';
order.EMSX_AMOUNT = int32(330);
order.EMSX_ORDER_TYPE = 'MKT';
order.EMSX_BROKER = 'BB';
order.EMSX_TIF = 'DAY';
order.EMSX_HAND_INSTRUCTION = 'ANY';
order.EMSX_SIDE = 'BUY';

Create and route the order using the Bloomberg EMSX connection c and the order
request structure order. Use the custom event handler processEventToBlotter by
setting the name-value pair argument 'useDefaultEventHandler' to false.

6 Functions — Alphabetical List

6-96

events = createOrderAndRoute(c,order,'useDefaultEventHandler',false)

events =

 []

 CreateOrderAndRoute = {

 EMSX_SEQUENCE = 381499

 EMSX_ROUTE_ID = 1

 MESSAGE = Order created and routed

 }

createOrderAndRoute creates the order, routes the order, and returns a structure
events that contains an empty double. processEventToBlotter displays output from
createOrderAndRoute with the order number EMSX_SEQUENCE, route number
EMSX_ROUTE_ID, and message: Order created and routed.

The order blotter updates using the information for the created and routed order, where
order number EMSX_SEQUENCE is 381499, using the event handler function
processEventToBlotter. The order blotter updates as orders are created and
managed.

Close the Bloomberg EMSX connection.

 emsxOrderBlotter

6-97

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

Output Arguments
t — MATLAB timer
object

MATLAB timer, returned as a MATLAB object. For details, see timer.

subs — Bloomberg EMSX subscription list
subscription list object

Bloomberg EMSX subscription list, returned as a Bloomberg EMSX subscription list
object.

See Also
close | createOrder | createOrder | createOrderAndRoute |
createOrderAndRouteWithStrat | deleteOrder | deleteRoute | emsx |
modifyOrder | orders | routeOrder | routes | timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2

External Websites
EMSX API Programmers Guide

6 Functions — Alphabetical List

6-98

https://emsx-api-doc.readthedocs.io/en/latest/index.html

Introduced in R2013a

 emsxOrderBlotter

6-99

processEvent
Sample Bloomberg EMSX event handler

Syntax
processEvent(c)

Description
processEvent(c) displays and flushes the event queue associated with the Bloomberg
EMSX connection c. processEvent is a sample event handler function. You can build a
custom event handler function to process Bloomberg EMSX events.

Examples

Continually Process the Bloomberg EMSX Event Queue

Create the Bloomberg EMSX connection c.

 c = emsx('//blp/emapisvc_beta');

Use timer to continually process the Bloomberg EMSX event queue.
 t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate')

t is the MATLAB timer object. For details, see timer.

Close the Bloomberg EMSX connection.

close(c)

6 Functions — Alphabetical List

6-100

Process the Bloomberg EMSX Event Queue Once

Create the Bloomberg EMSX connection c.

 c = emsx('//blp/emapisvc_beta');

Use the default event handler function processEvent to process the Bloomberg EMSX
event queue once.

processEvent(c)

SessionConnectionUp = {

 server = "localhost/127.0.0.1:8194"

}

SessionStarted = {

}

ServiceOpened = {

 serviceName = "//blp/emapisvc_beta"

}

processEvent clears the Bloomberg EMSX event queue.

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

 processEvent

6-101

See Also
close | createOrder | createOrderAndRoute | createOrderAndRouteWithStrat |
deleteOrder | deleteRoute | emsx | modifyOrder | orders | routeOrder | routes |
timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

External Websites
EMSX API Programmers Guide

Introduced in R2013a

6 Functions — Alphabetical List

6-102

https://emsx-api-doc.readthedocs.io/en/latest/index.html

routeOrder
Route Bloomberg EMSX order

Syntax
events = routeOrder(c,route)
events = routeOrder(c,route,'timeOut',timeout)

routeOrder(___ ,'useDefaultEventHandler',false)

___ = routeOrder(c,route,options)

Description
events = routeOrder(c,route) routes a Bloomberg EMSX order using the
Bloomberg EMSX connection c and route request route. routeOrder returns a status
message using the default event handler.

events = routeOrder(c,route,'timeOut',timeout) specifies a timeout value
timeout for the execution of the default event handler.

routeOrder(___ ,'useDefaultEventHandler',false) routes a Bloomberg EMSX
order using any of the input arguments in the previous syntaxes and a custom event
handler. Write a custom event handler to process the events associated with routing
orders. This syntax does not have an output argument because the custom event handler
processes the contents of the event queue. If you want to use the default event handler
instead, set the flag 'useDefaultEventHandler' to true and use the events output
argument. By default, the flag 'useDefaultEventHandler' is set to true.

___ = routeOrder(c,route,options) uses the options structure to customize the
output, which is useful to preconfigure and save your options for repeated use. The
available options structure fields are timeOut and useDefaultEventHandler. Use
the events output argument when the flag useDefaultEventHandler is set to true
and omit this output argument when useDefaultEventHandler is set to false.

 routeOrder

6-103

Examples

Route an Order Using the Default Event Handler

To route a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create the order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page 4-
12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using int32. This code specifies to route 100 shares of IBM to the broker BB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);
route.EMSX_TICKER = 'IBM';
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = 'BB';
route.EMSX_HAND_INSTRUCTION = 'ANY';

Route the order using the Bloomberg EMSX connection c and route.

events = routeOrder(c,route)

events =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order Routed'

The default event handler processes the events associated with routing the order.
routeOrder returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

6 Functions — Alphabetical List

6-104

Close the Bloomberg EMSX connection.

close(c)

Route an Order Using a Timeout

To route a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create the order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page 4-
12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using int32. This code specifies to route 100 shares of IBM to the broker BB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);
route.EMSX_TICKER = 'IBM';
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = 'BB';
route.EMSX_HAND_INSTRUCTION = 'ANY';

Route the order using the Bloomberg EMSX connection c and route. Set the timeout
value to 200 milliseconds.

events = routeOrder(c,route,'timeOut',200)

events =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order Routed'

The default event handler processes the events associated with routing the order.
routeOrder returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

 routeOrder

6-105

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Route an Order Using a Custom Event Handler

To route a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create the order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page 4-
12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using int32. This code specifies to route 100 shares of IBM to the broker BB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);
route.EMSX_TICKER = 'IBM';
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = 'BB';
route.EMSX_HAND_INSTRUCTION = 'ANY';

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate')
start(t)

t is the MATLAB timer object. For details, see timer.

Route the order using the Bloomberg EMSX connection c and route. Set the flag
'useDefaultEventHandler' to false so that eventhandler processes the events
associated with routing an order.

routeOrder(c,route,'useDefaultEventHandler',false)

6 Functions — Alphabetical List

6-106

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)

Route an Order Using an Options Structure

To route a Bloomberg EMSX order, create the connection c using emsx, set up the order
subscription using orders, and create the order using createOrder. For an example
showing these activities, see “Create and Manage a Bloomberg EMSX Order” on page 4-
12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using int32. This code specifies to route 100 shares of IBM to the broker BB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);
route.EMSX_TICKER = 'IBM';
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = 'BB';
route.EMSX_HAND_INSTRUCTION = 'ANY';

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Route
the order using the Bloomberg EMSX connection c, route, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = routeOrder(c,route,options)

 routeOrder

6-107

events =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order Routed'

The default event handler processes the events associated with routing the order.
routeOrder returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

route — Route request
structure

Route request, specified as a structure containing these fields.

Convert the numbers to 32-bit signed integers using int32. EMSX_SEQUENCE must
denote an existing order sequence number.

6 Functions — Alphabetical List

6-108

Field Description
EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_BROKER Bloomberg EMSX broker name
EMSX_HAND_INSTRUCTION Bloomberg EMSX hand instruction

Example: route.EMSX_SEQUENCE = int32(728918);
route.EMSX_TICKER = 'XYZ';
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = 'BB';
route.EMSX_HAND_INSTRUCTION = 'ANY';

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.
Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.
Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

 routeOrder

6-109

Output Arguments
events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

See Also
close | createOrder | createOrderAndRoute | createOrderAndRouteWithStrat |
delete | deleteOrder | deleteRoute | emsx | modifyOrder | orders |
routeOrderWithStrat | routes | start | stop | timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

External Websites
EMSX API Programmers Guide

Introduced in R2013a

6 Functions — Alphabetical List

6-110

https://emsx-api-doc.readthedocs.io/en/latest/index.html

groupRouteOrderWithStrat
Route multiple Bloomberg EMSX orders with strategies

Syntax
events = groupRouteOrderWithStrat(c,route,strat)
events = groupRouteOrderWithStrat(c,route,strat,'timeOut',timeout)

groupRouteOrderWithStrat(___ ,'useDefaultEventHandler',false)

___ = groupRouteOrderWithStrat(c,route,strat,options)

Description
events = groupRouteOrderWithStrat(c,route,strat) routes multiple
Bloomberg EMSX orders with strategies using the Bloomberg EMSX connection c, route
request route, and strategy strat. routeOrderWithStrat returns the order sequence
number, route number, and status message using the default event handler.

events = groupRouteOrderWithStrat(c,route,strat,'timeOut',timeout)
specifies a timeout value timeout for the execution of the default event handler.

groupRouteOrderWithStrat(___ ,'useDefaultEventHandler',false) routes
multiple Bloomberg EMSX orders with strategies using any of the input arguments in the
previous syntaxes and a custom event handler. To process the events associated with
routing orders, write a custom event handler. This syntax does not have an output
argument because the custom event handler processes the contents of the event queue. If
you want to use the default event handler instead, set the flag
'useDefaultEventHandler' to true and use the events output argument. By default,
the flag 'useDefaultEventHandler' is set to true.

___ = groupRouteOrderWithStrat(c,route,strat,options) uses the options
structure to customize the output, which is useful to preconfigure and save your options
for repeated use. The available options structure fields are timeOut and
useDefaultEventHandler. Use the events output argument when the flag

 groupRouteOrderWithStrat

6-111

useDefaultEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

Examples

Route Orders Using the Default Event Handler

To route a Bloomberg EMSX order with strategies, create the connection c using emsx,
set up the order subscription using orders, and create the order using createOrder.
For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using int32. This code specifies these route request fields:

• Order numbers 335877 and 335878
• Stock symbol IBM
• 100 percent of shares shown on the order to be routed
• Broker BMTB
• Any hand instruction
• Time in force set to DAY
• Market order type

route.EMSX_SEQUENCE = {int32(335877);int32(335878)};
route.EMSX_TICKER = 'IBM';
route.EMSX_AMOUNT_PERCENT = int32(100);
route.EMSX_BROKER = 'BMTB';
route.EMSX_HAND_INSTRUCTION = 'ANY';
route.EMSX_TIF = 'DAY';
route.EMSX_ORDER_TYPE = 'MKT';

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Route the orders using the Bloomberg EMSX connection c, route, and strat.

6 Functions — Alphabetical List

6-112

events = groupRouteOrderWithStrat(c,route,strat)

events =

 EMSX_SUCCESS_ROUTES: [1x1 struct]
 EMSX_FAILED_ROUTES: [1x1 struct]
 MESSAGE: '1 of 1 Order(s) Routed'

 where

 events.EMSX_SUCCESS_ROUTES =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1

 and events.EMSX_FAILED_ROUTES =

 EMSX_SEQUENCE: 335878
 ERROR_CODE: 0
 ERROR_MESSAGE: {'Order 335878 View-only orders can not be routed'}

The default event handler processes the events associated with routing the order.
groupRouteOrderWithStrat returns events as a structure that contains these fields:

• Bloomberg EMSX success routing structure, which contains the order number and
route identifier for the orders that successfully routed

• Bloomberg EMSX failed routing structure, which contains the order number, error
code, and error message for the orders that failed to route

• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Route Orders Using a Timeout

To route a Bloomberg EMSX order with strategies, create the connection c using emsx,
set up the order subscription using orders, and create the order using createOrder.
For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Order” on page 4-12. Set up the route subscription using routes.

 groupRouteOrderWithStrat

6-113

Define the route request structure route. Convert the numbers to 32-bit signed integers
using int32. This code specifies these route request fields:

• Order numbers 335877 and 335878
• Stock symbol IBM
• 100 percent of shares shown on the order to be routed
• Broker BMTB
• Any hand instruction
• Time in force set to DAY
• Market order type

route.EMSX_SEQUENCE = {int32(335877);int32(335878)};
route.EMSX_TICKER = 'IBM';
route.EMSX_AMOUNT_PERCENT = int32(100);
route.EMSX_BROKER = 'BMTB';
route.EMSX_HAND_INSTRUCTION = 'ANY';
route.EMSX_TIF = 'DAY';
route.EMSX_ORDER_TYPE = 'MKT';

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Route the orders using the Bloomberg EMSX connection c, route, and strat. Set the
timeout value to 200 milliseconds.

events = groupRouteOrderWithStrat(c,route,strat,'timeOut',200)

events =

 EMSX_SUCCESS_ROUTES: [1x1 struct]
 EMSX_FAILED_ROUTES: [1x1 struct]
 MESSAGE: '1 of 1 Order(s) Routed'

 where

 events.EMSX_SUCCESS_ROUTES =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1

 and events.EMSX_FAILED_ROUTES =

6 Functions — Alphabetical List

6-114

 EMSX_SEQUENCE: 335878
 ERROR_CODE: 0
 ERROR_MESSAGE: {'Order 335878 View-only orders can not be routed'}

The default event handler processes the events associated with routing the order.
groupRouteOrderWithStrat returns events as a structure that contains these fields:

• Bloomberg EMSX success routing structure, which contains the order number and
route identifier for the orders that successfully routed

• Bloomberg EMSX failed routing structure, which contains the order number, error
code, and error message for the orders that failed to route

• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Route Orders Using a Custom Event Handler

To route a Bloomberg EMSX order with strategies, create the connection c using emsx,
set up the order subscription using orders, and create the order using createOrder.
For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using int32. This code specifies these route request fields:

• Order numbers 335877 and 335878
• Stock symbol IBM
• 100 percent of shares shown on the order to be routed
• Broker BMTB
• Any hand instruction

 groupRouteOrderWithStrat

6-115

• Time in force set to DAY
• Market order type

route.EMSX_SEQUENCE = {int32(335877);int32(335878)};
route.EMSX_TICKER = 'IBM';
route.EMSX_AMOUNT_PERCENT = int32(100);
route.EMSX_BROKER = 'BMTB';
route.EMSX_HAND_INSTRUCTION = 'ANY';
route.EMSX_TIF = 'DAY';
route.EMSX_ORDER_TYPE = 'MKT';

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Suppose that you create a custom event handler function called eventhandler with
input argument c. Run eventhandler using timer. To run eventhandler immediately,
start the timer using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate')
start(t)

t is the MATLAB timer object. For details, see timer.

Route the orders using the Bloomberg EMSX connection c, route, and strat. Set the
flag 'useDefaultEventHandler' to false so that eventhandler processes the
events associated with routing an order.

groupRouteOrderWithStrat(c,route,strat,'useDefaultEventHandler',false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. To stop data updates, stop the timer using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

If you are done processing data updates, delete the timer using delete.

6 Functions — Alphabetical List

6-116

delete(t)

Close the Bloomberg EMSX connection.

close(c)

Route Orders Using an Options Structure

To route a Bloomberg EMSX order with strategies, create the connection c using emsx,
set up the order subscription using orders, and create the order using createOrder.
For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using int32. This code specifies these route request fields:

• Order numbers 335877 and 335878
• Stock symbol IBM
• 100 percent of shares shown on the order to be routed
• Broker BMTB
• Any hand instruction
• Time in force set to DAY
• Market order type

route.EMSX_SEQUENCE = {int32(335877);int32(335878)};
route.EMSX_TICKER = 'IBM';
route.EMSX_AMOUNT_PERCENT = int32(100);
route.EMSX_BROKER = 'BMTB';
route.EMSX_HAND_INSTRUCTION = 'ANY';
route.EMSX_TIF = 'DAY';
route.EMSX_ORDER_TYPE = 'MKT';

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Route

 groupRouteOrderWithStrat

6-117

the orders using the Bloomberg EMSX connection c, route, strat, and options
structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = groupRouteOrderWithStrat(c,route,strat,options)

events =

 EMSX_SUCCESS_ROUTES: [1x1 struct]
 EMSX_FAILED_ROUTES: [1x1 struct]
 MESSAGE: '1 of 1 Order(s) Routed'

 where

 events.EMSX_SUCCESS_ROUTES =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1

 and events.EMSX_FAILED_ROUTES =

 EMSX_SEQUENCE: 335878
 ERROR_CODE: 0
 ERROR_MESSAGE: {'Order 335878 View-only orders can not be routed'}

The default event handler processes the events associated with routing the order.
groupRouteOrderWithStrat returns events as a structure that contains these fields:

• Bloomberg EMSX success routing structure, which contains the order number and
route identifier for the orders that successfully routed

• Bloomberg EMSX failed routing structure, which contains the order number, error
code, and error message for the orders that failed to route

• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

6 Functions — Alphabetical List

6-118

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

route — Route request
structure

Route request, specified as a structure containing these fields.

Convert the numbers to 32-bit signed integers using int32. EMSX_SEQUENCE must
denote an existing order sequence number.

Field Description
EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_BROKER Bloomberg EMSX broker name
EMSX_HAND_INSTRUCTION Bloomberg EMSX hand instruction
EMSX_TIF Bloomberg EMSX time in force
EMSX_ORDER_TYPE Bloomberg EMSX order type

Example: route.EMSX_SEQUENCE = int32(728918);
route.EMSX_TICKER = 'XYZ';
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = 'BB';
route.EMSX_HAND_INSTRUCTION = 'ANY';
route.EMSX_TIF = 'DAY';
route.EMSX_ORDER_TYPE = 'MKT';

Data Types: struct

 groupRouteOrderWithStrat

6-119

strat — Order strategies
structure

Order strategies, specified as a structure that contains the fields: EMSX_STRATEGY_NAME,
EMSX_STRATEGY_FIELD_INDICATORS, and EMSX_STRATEGY_FIELDS. The structure
field values must align with the strategy fields specified by EMSX_STRATEGY_NAME. For
details about strategy fields and ordering, see getBrokerInfo.

Convert EMSX_STRATEGY_FIELD_INDICATORS to a 32-bit signed integer using int32.
Set EMSX_STRATEGY_FIELD_INDICATORS equal to 0 for each field to use the field data
setting in EMSX_FIELD_DATA. Or, set EMSX_STRATEGY_FIELD_INDICATORS equal to 1
to ignore the data in EMSX_FIELD_DATA.
Example: strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.
Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.
Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

6 Functions — Alphabetical List

6-120

Output Arguments
events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

See Also
close | createOrder | createOrderAndRoute | createOrderAndRouteWithStrat |
delete | deleteOrder | deleteRoute | emsx | getBrokerInfo | modifyOrder |
orders | routeOrder | routeOrderWithStrat | routes | start | stop | timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

External Websites
EMSX API Programmers Guide

Introduced in R2015b

 groupRouteOrderWithStrat

6-121

https://emsx-api-doc.readthedocs.io/en/latest/index.html

routeOrderWithStrat
Route Bloomberg EMSX order with strategies

Syntax
events = routeOrderWithStrat(c,route,strat)
events = routeOrderWithStrat(c,route,strat,'timeOut',timeout)

routeOrderWithStrat(___ ,'useDefaultEventHandler',false)

___ = routeOrderWithStrat(c,route,strat,options)

Description
events = routeOrderWithStrat(c,route,strat) routes a Bloomberg EMSX order
with strategies using the Bloomberg EMSX connection c, route request route, and
strategy strat. routeOrderWithStrat returns the order sequence number, route
number, and status message using the default event handler.

events = routeOrderWithStrat(c,route,strat,'timeOut',timeout) specifies
a timeout value timeout for the execution of the default event handler.

routeOrderWithStrat(___ ,'useDefaultEventHandler',false) routes a
Bloomberg EMSX order with strategies using any of the input arguments in the previous
syntaxes and a custom event handler. Write a custom event handler to process the events
associated with routing orders. This syntax does not have an output argument because
the custom event handler processes the contents of the event queue. If you want to use
the default event handler instead, set the flag 'useDefaultEventHandler' to true
and use the events output argument. By default, the flag 'useDefaultEventHandler'
is set to true.

___ = routeOrderWithStrat(c,route,strat,options) uses the options
structure to customize the output, which is useful to preconfigure and save your options
for repeated use. The available options structure fields are timeOut and
useDefaultEventHandler. Use the events output argument when the flag

6 Functions — Alphabetical List

6-122

useDefaultEventHandler is set to true and omit this output argument when
useDefaultEventHandler is set to false.

Examples

Route an Order Using the Default Event Handler

To route a Bloomberg EMSX order with strategies, create the connection c using emsx,
set up the order subscription using orders, and create the order using createOrder.
For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using int32. This code specifies to route 100 shares of IBM to the broker BMTB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);
route.EMSX_TICKER = 'IBM';
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = 'BMTB';
route.EMSX_HAND_INSTRUCTION = 'ANY';

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Route the order using the Bloomberg EMSX connection c, route, and strat.

events = routeOrderWithStrat(c,route,strat)

events =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order Routed'

The default event handler processes the events associated with routing the order.
routeOrderWithStrat returns events as a structure that contains these fields:

 routeOrderWithStrat

6-123

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Route an Order Using a Timeout

To route a Bloomberg EMSX order with strategies, create the connection c using emsx,
set up the order subscription using orders, and create the order using createOrder.
For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using int32. This code specifies to route 100 shares of IBM to the broker BMTB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);
route.EMSX_TICKER = 'IBM';
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = 'BMTB';
route.EMSX_HAND_INSTRUCTION = 'ANY';

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Route the order using the Bloomberg EMSX connection c, route, and strat. Set the
timeout value to 200 milliseconds.

6 Functions — Alphabetical List

6-124

events = routeOrderWithStrat(c,route,strat,'timeOut',200)

events =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order Routed'

The default event handler processes the events associated with routing the order.
routeOrderWithStrat returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Route an Order Using a Custom Event Handler

To route a Bloomberg EMSX order with strategies, create the connection c using emsx,
set up the order subscription using orders, and create the order using createOrder.
For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using int32. This code specifies to route 100 shares of IBM to the broker BMTB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);
route.EMSX_TICKER = 'IBM';
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = 'BMTB';
route.EMSX_HAND_INSTRUCTION = 'ANY';

 routeOrderWithStrat

6-125

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using timer. Start the timer to run eventhandler
immediately using start. For details, see “Writing and Running Custom Event Handler
Functions with Bloomberg EMSX” on page 1-25.

t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate')
start(t)

t is the MATLAB timer object. For details, see timer.

Route the order using the Bloomberg EMSX connection c, route, and strat. Set the flag
'useDefaultEventHandler' to false so that eventhandler processes the events
associated with routing an order.

routeOrderWithStrat(c,route,strat,'useDefaultEventHandler',false)

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs. Stop the timer to stop data updates using stop.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)

Route an Order Using an Options Structure

To route a Bloomberg EMSX order with strategies, create the connection c using emsx,
set up the order subscription using orders, and create the order using createOrder.

6 Functions — Alphabetical List

6-126

For an example showing these activities, see “Create and Manage a Bloomberg EMSX
Order” on page 4-12. Set up the route subscription using routes.

Define the route request structure route. Convert the numbers to 32-bit signed integers
using int32. This code specifies to route 100 shares of IBM to the broker BMTB using any
hand instruction and the order number 335877.

route.EMSX_SEQUENCE = int32(335877);
route.EMSX_TICKER = 'IBM';
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = 'BMTB';
route.EMSX_HAND_INSTRUCTION = 'ANY';

Create the order strategies structure strat using the strategy SSP. Convert the field
indicators to a 32-bit signed integer using int32.

strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Route
the order using the Bloomberg EMSX connection c, route, strat, and options structure
options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

events = routeOrderWithStrat(c,route,strat,options)

events =

 EMSX_SEQUENCE: 335877
 EMSX_ROUTE_ID: 1
 MESSAGE: 'Order Routed'

The default event handler processes the events associated with routing the order.
routeOrderWithStrat returns events as a structure that contains these fields:

• Bloomberg EMSX order number
• Bloomberg EMSX route identifier
• Bloomberg EMSX message

 routeOrderWithStrat

6-127

Unsubscribe from order and route events using the Bloomberg EMSX subscription list
objects osubs and rsubs. This code assumes that orders creates osubs and routes
creates rsubs.

c.Session.unsubscribe(osubs)
c.Session.unsubscribe(rsubs)

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

route — Route request
structure

Route request, specified as a structure containing these fields.

Convert the numbers to 32-bit signed integers using int32. EMSX_SEQUENCE must
denote an existing order sequence number.

Field Description
EMSX_SEQUENCE Bloomberg EMSX order sequence number
EMSX_TICKER Bloomberg EMSX ticker symbol
EMSX_AMOUNT Bloomberg EMSX number of shares
EMSX_BROKER Bloomberg EMSX broker name
EMSX_HAND_INSTRUCTION Bloomberg EMSX hand instruction

Example: route.EMSX_SEQUENCE = int32(728918);
route.EMSX_TICKER = 'XYZ';
route.EMSX_AMOUNT = int32(100);
route.EMSX_BROKER = 'BB';
route.EMSX_HAND_INSTRUCTION = 'ANY';

6 Functions — Alphabetical List

6-128

Data Types: struct

strat — Order strategies
structure

Order strategies, specified as a structure that contains the fields: EMSX_STRATEGY_NAME,
EMSX_STRATEGY_FIELD_INDICATORS, and EMSX_STRATEGY_FIELDS. The structure
field values must align with the strategy fields specified by EMSX_STRATEGY_NAME. For
details about strategy fields and ordering, see getBrokerInfo.

Convert EMSX_STRATEGY_FIELD_INDICATORS to a 32-bit signed integer using int32.
Set EMSX_STRATEGY_FIELD_INDICATORS equal to 0 for each field to use the field data
setting in EMSX_FIELD_DATA. Or, set EMSX_STRATEGY_FIELD_INDICATORS equal to 1
to ignore the data in EMSX_FIELD_DATA.
Example: strat.EMSX_STRATEGY_NAME = 'SSP';
strat.EMSX_STRATEGY_FIELD_INDICATORS = int32([0 0 0]);
strat.EMSX_STRATEGY_FIELDS = {'09:30:00','14:30:00',50};

Data Types: struct

timeout — Timeout value
500 milliseconds (default) | nonnegative integer

Timeout value, specified as a nonnegative integer. This integer denotes the time in
milliseconds the event handler listens to the queue for an event for each iteration of the
code. The event handler can be a default or custom event handler.
Data Types: double

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. To reuse the
settings for specifying a custom event handler or timeout value for the event handler, use
the options structure.

Specify using a custom event handler and a timeout value of 500 milliseconds.
Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

 routeOrderWithStrat

6-129

Output Arguments
events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

See Also
close | createOrder | createOrderAndRoute | createOrderAndRouteWithStrat |
delete | deleteOrder | deleteRoute | emsx | getBrokerInfo | modifyOrder |
orders | routeOrder | routes | start | stop | timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

External Websites
EMSX API Programmers Guide

Introduced in R2013a

6 Functions — Alphabetical List

6-130

https://emsx-api-doc.readthedocs.io/en/latest/index.html

routes
Obtain Bloomberg EMSX route subscription

Syntax
[events,subs] = routes(c,fields)

[events,subs] = routes(c,fields,Name,Value)
[events,subs] = routes(c,fields,options)

Description
[events,subs] = routes(c,fields) subscribes to Bloomberg EMSX fields fields
using the Bloomberg EMSX connection c. routes returns existing event data events
from the event queue and the Bloomberg EMSX subscription list subs.

[events,subs] = routes(c,fields,Name,Value) uses additional options specified
by one or more Name,Value pair arguments to specify a custom event handler or timeout
value for the event handler.

[events,subs] = routes(c,fields,options) uses the options structure to
customize the output, which is useful to preconfigure and save your options for repeated
use. The options structure fields and values correspond to names and values of name-
value pair arguments, respectively.

Examples

Set Up Route Subscription Using the Default Event Handler

Create the Bloomberg EMSX connection c.

 c = emsx('//blp/emapisvc_beta');

 routes

6-131

Set up the route subscription for Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection c.

fields = {'EMSX_BROKER','EMSX_WORKING'};

[events,subs] = routes(c,fields)

events =

 MSG_TYPE: {5x1 cell}
 MSG_SUB_TYPE: {5x1 cell}
 EVENT_STATUS: [5x1 int32]
 ...

subs =

com.bloomberglp.blpapi.SubscriptionList@463b9287

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

Set Up Route Subscription Using a Custom Event Handler

Create the Bloomberg EMSX connection c.

 c = emsx('//blp/emapisvc_beta');

Write a custom event handler function named eventhandler. Run the custom event
handler using timer. Start the timer to run eventhandler immediately using start.
For details, see “Writing and Running Custom Event Handler Functions with Bloomberg
EMSX” on page 1-25.
t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate');
start(t)

6 Functions — Alphabetical List

6-132

t is the timer object.

Set up the route subscription for Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection c. Use the custom event handler
by setting the name-value pair argument 'useDefaultEventHandler' to false.

fields = {'EMSX_BROKER','EMSX_WORKING'};

[events,subs] = routes(c,fields,'useDefaultEventHandler',false)

events =

 []

subs =

com.bloomberglp.blpapi.SubscriptionList@463b9287

events is an empty double. The custom event handler processes the event queue. subs
contains the Bloomberg EMSX subscription list object.

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.
Stop the timer to stop data updates using stop.

c.Session.unsubscribe(subs)
stop(t)

If you are done processing data updates, delete the timer using delete.

delete(t)

Close the Bloomberg EMSX connection.

close(c)

Set Up Route Subscription Using a Timeout

Create the Bloomberg EMSX connection c.

 c = emsx('//blp/emapisvc_beta');

 routes

6-133

Set up the route subscription for Bloomberg EMSX fields EMSX_BROKER and
EMSX_WORKING using the Bloomberg EMSX connection c. Specify the name-value pair
argument timeOut and set it to 200 milliseconds.

fields = {'EMSX_BROKER','EMSX_WORKING'};

[events,subs] = routes(c,fields,'timeOut',200)

events =

 MSG_TYPE: {5x1 cell}
 MSG_SUB_TYPE: {5x1 cell}
 EVENT_STATUS: [5x1 int32]
 ...

subs =

com.bloomberglp.blpapi.SubscriptionList@463b9287

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

Set Up Route Subscription Using an Options Structure

Create the Bloomberg EMSX connection c.

 c = emsx('//blp/emapisvc_beta');

Create a structure options. To use the default event handler, set the field
useDefaultEventHandler to true. Set the field timeOut to 200 milliseconds. Set up
the route subscription for Bloomberg EMSX fields EMSX_BROKER and EMSX_WORKING
using the Bloomberg EMSX connection c and options structure options.

options.useDefaultEventHandler = true;
options.timeOut = 200;

6 Functions — Alphabetical List

6-134

fields = {'EMSX_BROKER','EMSX_WORKING'};

[events,subs] = routes(c,fields,options)

events =

 MSG_TYPE: {5x1 cell}
 MSG_SUB_TYPE: {5x1 cell}
 EVENT_STATUS: [5x1 int32]
 ...

subs =

com.bloomberglp.blpapi.SubscriptionList@463b9287

events contains fields for the events currently in the event queue. subs contains the
Bloomberg EMSX subscription list object.

Unsubscribe from route events using the Bloomberg EMSX subscription list object subs.

c.Session.unsubscribe(subs)

Close the Bloomberg EMSX connection.

close(c)

Input Arguments
c — Bloomberg EMSX service connection
connection object

Bloomberg EMSX service connection, specified as a connection object created using
emsx.

fields — Bloomberg EMSX field information
cell array

Bloomberg EMSX field information, specified using a cell array. Use
getAllFieldMetaData to view available field information for the Bloomberg EMSX
service.
Example: 'EMSX_TICKER'
'EMSX_AMOUNT'

 routes

6-135

'EMSX_ORDER_TYPE'

Data Types: cell

options — Options for custom event handler or timeout value
structure

Options for custom event handler or timeout value, specified as a structure. Use the
options structure instead of name-value pair arguments to reuse the optional name-value
pair arguments to specify a custom event handler or timeout value for the event handler.

The options structure field and values correspond to names and values of the name-
value pair arguments, respectively.

Specify using a custom event handler and a timeout value of 500 milliseconds.
Example: options.useDefaultEventHandler = false;
options.timeOut = 500;

Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'useDefaultEventHandler',false

useDefaultEventHandler — Flag for event handler preference
true (default) | false

Flag for event handler preference, indicating whether to use the default or custom event
handler to process order events, specified as the comma-separated pair consisting of
'useDefaultEventHandler' and the logical values true or false.

To specify the default event handler, set this flag to true.

Otherwise, set this flag to false to specify a custom event handler.
Data Types: logical

6 Functions — Alphabetical List

6-136

timeOut — Timeout value for event handler
500 milliseconds (default) | nonnegative integer

Timeout value for event handler for the Bloomberg EMSX service, specified as the
comma-separated pair consisting of 'timeOut' and a nonnegative integer in units of
milliseconds.
Example: 'timeOut',200
Data Types: double

Output Arguments
events — Event queue contents
double | structure

Event queue contents, returned as a double or structure.

If the event queue contains events, events is a structure containing the current contents
of the event queue. Otherwise, events is an empty double.

When the name-value pair argument 'useDefaultEventHandler' or the same field for
the structure options is set to false, events is an empty double.

subs — Bloomberg EMSX subscription list
subscription list object

Bloomberg EMSX subscription list, returned as a Bloomberg EMSX subscription list
object.

Tips
Suppose you create a custom event handler function called eventhandler with input
argument c. Run eventhandler using this code.

t = timer('TimerFcn',{@c.eventhandler},'Period',1,...
 'ExecutionMode','fixedRate')

t is the MATLAB timer object. For details, see timer.

 routes

6-137

See Also
close | createOrder | createOrderAndRoute | createOrderAndRouteWithStrat |
delete | deleteOrder | deleteRoute | emsx | getAllFieldMetaData |
modifyOrder | modifyRoute | orders | routeOrder | start | stop | timer

Topics
“Create and Manage a Bloomberg EMSX Order” on page 4-12
“Create and Manage a Bloomberg EMSX Route” on page 4-17
“Manage a Bloomberg EMSX Order and Route” on page 4-22
“Workflow for Bloomberg EMSX” on page 2-2
“Writing and Running Custom Event Handler Functions with Bloomberg EMSX” on page
1-25

External Websites
EMSX API Programmers Guide

Introduced in R2013a

6 Functions — Alphabetical List

6-138

https://emsx-api-doc.readthedocs.io/en/latest/index.html

xtrdr
Create X_TRADER connection

Description
The xtrdr function creates an xtrdr object, which represents an X_TRADER connection.
After you create an xtrdr object, you can use the object functions to create instrument
notifiers, instruments, order sets, and order profiles, and obtain current data. You can
also submit orders to X_TRADER.

Note Create only one X_TRADER connection per MATLAB session. To create an
X_TRADER connection, start a new MATLAB session.

Creation

Syntax
c = xtrdr

Description
c = xtrdr creates an X_TRADER connection object c. The xtrdr function starts
X_TRADER or connects to an existing X_TRADER session.

Properties
Gate — Gate
ActiveX COM object

Gate, specified as an ActiveX COM object.
Example: [1x1 COM.Xtapi_TTGate_1]

 xtrdr

6-139

InstrNotify — Instrument notifier
X_TRADER XTAPI instrument notifier object

Instrument notifier, specified as an X_TRADER XTAPI instrument notifier object. For
details, see X_TRADER API.

To set this property, use the createNotifier function.
Example: [1×1 COM.Xtapi_TTInstrNotify]

Instrument — Instrument
X_TRADER XTAPI instrument object

Instrument, specified as an X_TRADER XTAPI instrument object. For details, see
X_TRADER API.

To set this property, use the createInstrument function.
Example: [1×1 COM.Xtapi_TTInstrObj]

OrderSet — Order set
X_TRADER XTAPI order set object

Order set, specified as an X_TRADER order set object. For details, see X_TRADER API.

To set this property, use the createOrderSet function.
Example: [1×1 COM.Xtapi_TTOrderSet]

Object Functions
createNotifier Create instrument notifier for X_TRADER
createInstrument Create instrument for X_TRADER
createOrderSet Create order set for X_TRADER
createOrderProfile Create order profile for X_TRADER
getData Obtain current X_TRADER data
close Close X_TRADER connection

Examples

6 Functions — Alphabetical List

6-140

https://www.tradingtechnologies.com/help/apis/x_trader-api/x_trader-api-resources/
https://www.tradingtechnologies.com/help/apis/x_trader-api/x_trader-api-resources/
https://www.tradingtechnologies.com/help/apis/x_trader-api/x_trader-api-resources/

Create X_TRADER Connection

Use an X_TRADER connection to retrieve the exchange and last price data for an
instrument. The instrument used in this example continually expires.

To ensure that you use a current instrument, see the Market Explorer in X_TRADER Pro.

Create an X_TRADER connection.

c = xtrdr

c =

 xtrdr with properties:

 Gate: [1x1 COM.Xtapi_TTGate_1]
 InstrNotify: []
 Instrument: []
 OrderSet: []

Define an input structure s with fields corresponding to valid X_TRADER API options.
This example defines the input structure for Euro-Bobl Futures.

s = [];
s.Exchange = 'Eurex';
s.Product = 'OGBM';
s.ProdType = 'Option';
s.Contract = 'Jan12 P12300';
s.Alias = 'TestInstrument3';

s

s =

 Exchange: 'Eurex'
 Product: 'OGBM'
 ProdType: 'Option'
 Contract: 'Jan12 P12300'
 Alias: 'TestInstrument3'

Requirement: Restart the MATLAB session before reusing an 'Alias' setting.

Create an X_TRADER instrument.

 xtrdr

6-141

createInstrument(c,s)

Return the exchange and last price fields for the instrument.

s = c.Instrument(1);
f = {'Exchange','Last'};
d = getData(c,s,f)

d =

 Exchange: {'Eurex'}
 Last: {'45'}

Close the X_TRADER connection.

close(c)

See Also

Topics
“Workflows for Trading Technologies X_TRADER” on page 2-4
“Create an Order Using X_TRADER” on page 1-17
“Listen for X_TRADER Price Updates” on page 4-2
“Listen for X_TRADER Price Market Depth Updates” on page 4-4
“Submit X_TRADER Orders” on page 4-8

External Websites
X_TRADER API

Introduced in R2013a

6 Functions — Alphabetical List

6-142

https://www.tradingtechnologies.com/help/apis/x_trader-api/x_trader-api-resources/

close
Close X_TRADER connection

Syntax
close(X)

Description
close(X) closes the X_TRADER connection X.

Examples

Close X_TRADER Connection

close(X)

Input Arguments
X — X_TRADER connection
connection object

X_TRADER connection, specified as a connection object created using xtrdr.

See Also
xtrdr

Topics
“Create an Order Using X_TRADER” on page 1-17
“Listen for X_TRADER Price Updates” on page 4-2

 close

6-143

“Listen for X_TRADER Price Market Depth Updates” on page 4-4
“Submit X_TRADER Orders” on page 4-8
“Workflows for Trading Technologies X_TRADER” on page 2-4

External Websites
X_TRADER API

Introduced in R2013a

6 Functions — Alphabetical List

6-144

https://www.tradingtechnologies.com/help/apis/x_trader-api/x_trader-api-resources/

createInstrument
Create instrument for X_TRADER

Syntax
createInstrument(c,s)
createInstrument(c,Name,Value)

Description
createInstrument(c,s) creates the X_TRADER instrument defined by the structure s
with fields corresponding to valid X_TRADER API options. For details, see the Trading
Technologies X_TRADER API RTD Tutorial or X_TRADER API Class Reference.

createInstrument(c,Name,Value) creates the instrument using one or more
Name,Value pair arguments with names and values corresponding to valid X_TRADER
API options. For details, see the Trading Technologies X_TRADER API RTD Tutorial or
X_TRADER API Class Reference.

Examples

Create an X_TRADER Instrument Using an Input Structure

The instruments used in these examples continually expire. To ensure you use a current
instrument, see the Market Explorer in X_TRADER Pro.

Create the X_TRADER connection.

c = xtrdr;

Define an input structure s with fields corresponding to valid X_TRADER API options. For
example, create the input structure for Euro-Bobl Futures.

s = [];
s.Exchange = 'Eurex';

 createInstrument

6-145

s.Product = 'OGBM';
s.ProdType = 'Option';
s.Contract = 'Jan12 P12300';
s.Alias = 'TestInstrument3';
s

s =

 Exchange: 'Eurex'
 Product: 'OGBM'
 ProdType: 'Option'
 Contract: 'Jan12 P12300'
 Alias: 'TestInstrument3'

Requirement: Restart the MATLAB session before reusing an 'Alias' setting.

Create an X_TRADER instrument.

createInstrument(c,s)

Close the connection.

close(c)

Create an X_TRADER Instrument Using Name-Value Pairs

Create the X_TRADER connection.

c = xtrdr;

Create an X_TRADER instrument for Euro-Bobl Futures using name-value pair arguments
corresponding to valid X_TRADER API options.

createInstrument(c,'Exchange','Eurex','Product','OGBM',...
 'ProdType','Option','Contract','Jan12 P12300',...
 'Alias','TestInstrument3')

Close the connection.

close(c)

6 Functions — Alphabetical List

6-146

Retrieve Data Using Multiple X_TRADER Instruments

Create the X_TRADER connection.

c = xtrdr;

Create an X_TRADER instrument for Euro-Bobl Futures using name-value pair arguments
corresponding to valid X_TRADER API options.

createInstrument(c,'Exchange','Eurex','Product','OGBM',...
 'ProdType','Option','Contract','Jun14 P127',...
 'Alias','PriceInstrumentEurex')

Create another X_TRADER instrument for CAISO NP15 EZ Gen Hub 5 MW Peak
Calendar-Day Real-Time LMP Futures using name-value pair arguments corresponding to
valid X_TRADER API options. This contract expires in April 2014.

createInstrument(c,'Exchange','CME','Product','2F',...
 'ProdType','Future','Contract','Apr14',...
 'Alias','PriceInstrumentCMEApr14')

Create another X_TRADER instrument for CAISO NP15 EZ Gen Hub 5 MW Peak
Calendar-Day Real-Time LMP Futures using name-value pair arguments corresponding to
valid X_TRADER API options. This contract expires in October 2014.

createInstrument(c,'Exchange','CME','Product','2F',...
 'ProdType','Future','Contract','Oct14',...
 'Alias','PriceInstrumentCMEOct14')

Retrieve the exchange and product identifier for all three X_TRADER instruments.

d = getData(c,{'Exchange','Product'})

d =
 Exchange: {3x1 cell}
 Product: {3x1 cell}

d is a structure containing the Exchange and Product fields. The fields are cell arrays.

Display the Exchange field.

d.Exchange

ans =
 'Eurex'

 createInstrument

6-147

 'CME'
 'CME'

The Exchange field contains the exchange names Eurex and CME for the three
X_TRADER instruments.

Close the connection.

close(c)

Input Arguments
c — X_TRADER connection
connection object

X_TRADER connection, specified as a connection object created using xtrdr.

s — X_TRADER input structure
structure

X_TRADER input structure, specified using fields corresponding to valid X_TRADER API
options. For details, see the Trading Technologies X_TRADER API RTD Tutorial or
X_TRADER API Class Reference.

Caution: If the symbols for the exchange are entered incorrectly or the exchange server
is down, an error appears. For example, if the exchange is “CME” and the CME exchange
server is down, then this error appears: The price server for the Exchange CME is down.
Unable to create instrument.

Example: s = [];
s.Exchange = 'Eurex';
s.Product = 'OGBM';
s.ProdType = 'Option';
s.Contract = 'Jan12 P12300';
s.Alias = 'TestInstrument3';

Data Types: struct

6 Functions — Alphabetical List

6-148

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
createInstrument(X,'Exchange','Eurex','Product','OGBM','ProdType','O
ption','Contract','Jan12 P12300','Alias','TestInstrument3')

Property1 — Valid X_TRADER API options
character vector | string scalar

Valid X_TRADER API options, specified as a character vector or string scalar using
information in the Trading Technologies X_TRADER API RTD Tutorial or X_TRADER API
Class Reference.

Requirements:

• When using the 'Alias' name-value pair argument, ensure that every 'Alias'
name is unique across all X_TRADER instruments.

• Restart the MATLAB session before reusing an 'Alias' name.

Otherwise, createInstrument returns an error.

Data Types: char | string

Property2 — Valid X_TRADER API options
character vector | string scalar

Valid X_TRADER API options, specified as a character vector or string scalar using
information in the Trading Technologies X_TRADER API RTD Tutorial or X_TRADER API
Class Reference.
Data Types: char | string

See Also
createNotifier | createOrderProfile | createOrderSet | xtrdr

 createInstrument

6-149

Topics
“Create an Order Using X_TRADER” on page 1-17
“Listen for X_TRADER Price Updates” on page 4-2
“Listen for X_TRADER Price Market Depth Updates” on page 4-4
“Submit X_TRADER Orders” on page 4-8
“Workflows for Trading Technologies X_TRADER” on page 2-4

External Websites
X_TRADER API

Introduced in R2013a

6 Functions — Alphabetical List

6-150

https://www.tradingtechnologies.com/help/apis/x_trader-api/x_trader-api-resources/

createNotifier
Create instrument notifier for X_TRADER

Syntax
createNotifier(X,S)
createNotifier(X,Name,Value)

Description
createNotifier(X,S) creates the xtrdr instrument notifier defined by the structure S
with fields corresponding to valid X_TRADER API options. For details, see the Trading
Technologies X_TRADER API RTD Tutorial or X_TRADER API Class Reference.

createNotifier(X,Name,Value) creates the instrument notifier using X_TRADER API
options specified by one or more Name,Value pair arguments with names and values
corresponding to valid X_TRADER API options. For details, see the Trading Technologies
X_TRADER API RTD Tutorial or X_TRADER API Class Reference.

Examples

Create an X_TRADER Instrument Notifier Using an Input Structure

Start X_TRADER.

X = xtrdr;

Define an input structure, S, with fields corresponding to valid X_TRADER API options.

S = [];
S.UpdateFilter = '';
S.EnablePriceUpdates = -1;
S.EnableDepthUpdates = 0;
S.DebugLogLevel = 3;

 createNotifier

6-151

S.EnableOrderSetUpdates = -1;
S.DeliverAllPriceUpdates = 0;
S

S =

 struct with fields:

 UpdateFilter: ''
 EnablePriceUpdates: -1
 EnableDepthUpdates: 0
 DebugLogLevel: 3
 EnableOrderSetUpdates: -1
 DeliverAllPriceUpdates: 0

Create an xtrdr instrument notifier.

createNotifier(X,S)

Close the connection.

close(X)

Create an X_TRADER Instrument Notifier Using Name-Value Pairs

Start X_TRADER.

X = xtrdr;

Create an xtrdr instrument using name-value pairs corresponding to valid X_TRADER
API options.

createNotifier(X,'UpdateFilter','','EnablePriceUpdates',-1, ...
 'EnableDepthUpdates',0,'DebugLogLevel',3, ...
 'EnableOrderSetUpdates',-1,'DeliverAllPriceUpdates',0)

Close the connection.

6 Functions — Alphabetical List

6-152

close(X)

Input Arguments
X — X_TRADER connection
connection object

X_TRADER connection, specified as a connection object created using xtrdr.

S — xtrdr input structure with fields
structure

xtrdr input structure, specified with fields corresponding to valid X_TRADER API
options. For details, see the Trading Technologies X_TRADER API RTD Tutorial or
X_TRADER API Class Reference.
Example: S = [];
S.Exchange = 'Eurex';
S.Product = 'OGBM';
S.ProdType = 'Option';
S.Contract = 'Jan12 P12300';
S.Alias = 'TestInstrument3';

Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
createNotifier(X,'UpdateFilter','','EnablePriceUpdates',-1,'EnableDe
pthUpdates',0,'DebugLogLevel',3,'EnableOrderSetUpdates',-1,'DeliverA
llPriceUpdates',0) creates the xtrdr instrument notifier using valid API options.

Property1 — Valid X_TRADER API options
character vector | string scalar

 createNotifier

6-153

Valid X_TRADER API options, specified as a character vector or string scalar using the
details described in Trading Technologies X_TRADER API RTD Tutorial or X_TRADER API
Class Reference.
Example:
createNotifier(X,'UpdateFilter','','EnablePriceUpdates',-1,'EnableDe
pthUpdates',0,'DebugLogLevel',3,'EnableOrderSetUpdates',-1,'DeliverA
llPriceUpdates',0)

Data Types: char | string

Property2 — Valid X_TRADER API options
character vector | string scalar

Valid X_TRADER API options, specified as a character vector or string scalar using the
details described in Trading Technologies X_TRADER API RTD Tutorial or X_TRADER API
Class Reference.
Example:
createNotifier(X,'UpdateFilter','','EnablePriceUpdates',-1,'EnableDe
pthUpdates',0,'DebugLogLevel',3,'EnableOrderSetUpdates',-1,'DeliverA
llPriceUpdates',0)

Data Types: char | string

See Also
createInstrument | createOrderProfile | createOrderSet | xtrdr

Topics
“Listen for X_TRADER Price Updates” on page 4-2
“Listen for X_TRADER Price Market Depth Updates” on page 4-4
“Submit X_TRADER Orders” on page 4-8
“Workflows for Trading Technologies X_TRADER” on page 2-4

External Websites
X_TRADER API

Introduced in R2013a

6 Functions — Alphabetical List

6-154

https://www.tradingtechnologies.com/help/apis/x_trader-api/x_trader-api-resources/

createOrderProfile
Create order profile for X_TRADER

Syntax
P = createOrderProfile(X,S)
P = createOrderProfile(X,Name,Value)

Description
P = createOrderProfile(X,S) creates an order profile defined by the structure S
with fields corresponding to valid X_TRADER API options. For details, see the Trading
Technologies X_TRADER API RTD Tutorial or X_TRADER API Class Reference.

P = createOrderProfile(X,Name,Value) creates an order profile using X_TRADER
API options specified by one or more Name,Value pair arguments with names and values
corresponding to valid X_TRADER API options. For details, see the Trading Technologies
X_TRADER API RTD Tutorial or X_TRADER API Class Reference.

Examples

Create an Order Profile Using an Input Structure

Start X_TRADER.

X = xtrdr;

Define an input structure, S, with fields corresponding to valid X_TRADER API options.

S = [];
S.Instrument = [];
S.Customer = '';
S.Alias = '';
S.ReadProperties = 'b';

 createOrderProfile

6-155

S.WriteProperties = 'b';
S.Customers = {'<Default>'};
S.RoundOption = 2;
S.CustomerDefaults = [];
S

S =

 Instrument: []
 Customer: ''
 Alias: ''
 ReadProperties: 'b'
 WriteProperties: 'b'
 Customers: {'<Default>'}
 RoundOption: 2
 CustomerDefaults: []

Create an order profile.

P = createOrderProfile(X,S);

Close the connection.

close(X)

Create an Order Profile Using Name-Value Pairs

Start X_TRADER.

X = xtrdr;

Create an order profile using name-value pairs corresponding to valid X_TRADER API
options.

createOrderProfile(X,'Instrument',[],'Customer','',...
 'Alias','','ReadProperties','b',...
 'WriteProperties','b','Customers',{'<Default>'},...
 'RoundOption',2,'CustomerDefaults',[])

Close the connection.

6 Functions — Alphabetical List

6-156

close(X)

Input Arguments
X — X_TRADER connection
connection object

X_TRADER connection, specified as a connection object created using xtrdr.

S — xtrdr input structure with fields
structure

xtrdr input structure, specified with fields corresponding to valid X_TRADER API
options. For details, see the Trading Technologies X_TRADER API RTD Tutorial or
X_TRADER API Class Reference.
Example: S = [];
S.Exchange = 'Eurex';
S.Product = 'OGBM';
S.ProdType = 'Option';
S.Contract = 'Jan12 P12300';
S.Alias = 'TestInstrument3';

Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: createOrderProfile(X,'Instrument',
[],'Customer','<Default>','Alias','','RoundOption',2,'CustomerDefaul
ts')

Property1 — Valid X_TRADER API options
character vector | string scalar

 createOrderProfile

6-157

Valid X_TRADER API options, specified as a character vector or string scalar using the
details described in Trading Technologies X_TRADER API RTD Tutorial or X_TRADER API
Class Reference.
Example: createOrderProfile(X,'Instrument',
[],'Customer','<Default>','Alias','','RoundOption',2,'CustomerDefaul
ts')

Data Types: char | string

Property2 — Valid X_TRADER API options
character vector | string scalar

Valid X_TRADER API options, specified as a character vector or string scalar using the
details described in Trading Technologies X_TRADER API RTD Tutorial or X_TRADER API
Class Reference.
Example: createOrderProfile(X,'Instrument',
[],'Customer','<Default>','Alias','','RoundOption',2,'CustomerDefaul
ts')

Data Types: char | string

Output Arguments
P — Order profile
structure

Order profile, returned as a structure.

See Also
createInstrument | createNotifier | createOrderSet | xtrdr

Topics
“Create an Order Using X_TRADER” on page 1-17
“Listen for X_TRADER Price Updates” on page 4-2
“Listen for X_TRADER Price Market Depth Updates” on page 4-4
“Submit X_TRADER Orders” on page 4-8
“Workflows for Trading Technologies X_TRADER” on page 2-4

6 Functions — Alphabetical List

6-158

External Websites
X_TRADER API

Introduced in R2013a

 createOrderProfile

6-159

https://www.tradingtechnologies.com/help/apis/x_trader-api/x_trader-api-resources/

createOrderSet
Create order set for X_TRADER

Syntax
createOrderSet(X)
createOrderSet(X,S)
createOrderSet(X,Name,Value)

Description
createOrderSet(X) creates an xtrdr order set with empty properties. You can set the
properties individually using X_TRADER API options. For details, see the Trading
Technologies X_TRADER API RTD Tutorial or X_TRADER API Class Reference.

createOrderSet(X,S) creates an xtrdr order set defined by the structure S with
fields corresponding to X_TRADER API options. For details, see the Trading Technologies
X_TRADER API RTD Tutorial or X_TRADER API Class Reference.

createOrderSet(X,Name,Value) creates an order set using X_TRADER API options
specified by one or more Name,Value pair arguments with names and values
corresponding to X_TRADER API options. For details, see the Trading Technologies
X_TRADER API RTD Tutorial or X_TRADER API Class Reference.

Examples

Create an Empty Order Set

Start X_TRADER.

X = xtrdr;

Create an order set without any properties.

6 Functions — Alphabetical List

6-160

createOrderSet(X)

Close the connection.

close(X)

Create an Order Set Using an Input Structure

Start X_TRADER.

X = xtrdr;

Define an input structure, S, with fields corresponding to X_TRADER API options.

S = [];
S.Count = 0;
S.Alias = '';
S.ReadProperties = 'b';
S.WriteProperties = 'b';
S.EnableOrderSetUpdates = -1;
S.EnableOrderFillData = 0;
S.EnableOrderSend = 0;
S.EnableOrderAutoDelete = 0;
S.QuotingOrderProfile = [];
S.DebugLogLevel = 3;
S.QuoteWithCancelReplace = 0;
S.EnableOrderUpdateData = 0;
S.EnableFillCaching = 0;
S.AvgOpenPriceMode = 'NONE';
S.EnableOrderRejectData = 0;
S.OrderStatusNotifyMode = 'ORD_NOTIFY_NONE';

Create an order set.

createOrderSet(X,S)

Close the connection.

close(X)

 createOrderSet

6-161

Create an Order Set Using Name-Value Pair Arguments

Start X_TRADER.

X = xtrdr;

Create an order set using name-value pair arguments corresponding to X_TRADER API
options.
createOrderSet(X,'Count',0,'Alias','','ReadProperties','b',...
 'WriteProperties','b','EnableOrderSetUpdates',-1,...
 'EnableOrderFillData',0,'EnableOrderSend',0,...
 'EnableOrderAutoDelete',0,'QuotingOrderProfile',[],...
 'DebugLogLevel,3,'QuoteWithCancelReplace',0,...
 'EnableOrderUpdateData',0,'EnableFillCaching',0,...
 'AvgOpenPriceMode','NONE','EnableOrderRejectData',0,...
 'OrderStatusNotifyMode','ORD_NOTIFY_NONE')

Close the connection.

close(X)

Input Arguments
X — X_TRADER connection
connection object

X_TRADER connection, specified as a connection object created using xtrdr.

S — X_TRADER API properties
structure

X_TRADER API properties, specified as a structure where the field names match the
X_TRADER API properties. For details, see the Trading Technologies X_TRADER API RTD
Tutorial or X_TRADER API Class Reference.
Example: S = [];
S.Exchange = 'Eurex';
S.Product = 'OGBM';
S.ProdType = 'Option';
S.Contract = 'Jan12 P12300';
S.Alias = 'TestInstrument3';

Data Types: struct

6 Functions — Alphabetical List

6-162

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
createOrderSet(X,'Count',0,'Alias','','ReadProperties','b','WritePro
perties','b','EnableOrderSetUpdates',-1,'EnableOrderFillData',0,'Ena
bleOrderSend',0,'EnableOrderAutoDelete',0,'QuotingOrderProfile',
[]'DebugLogLevel,3,'QuoteWithCancelReplace',0,'EnableOrderUpdateData
',0,'EnableFillCaching',0,'AvgOpenPriceMode','NONE','EnableOrderReje
ctData',0,'OrderStatusNotifyMode','ORD_NOTIFY_NONE')

Property1 — X_TRADER API options
character vector | string scalar

X_TRADER API options, specified as a character vector or string scalar using the details
described in Trading Technologies X_TRADER API RTD Tutorial or X_TRADER API Class
Reference.
Data Types: char | string

Property2 — X_TRADER API options
character vector | string scalar

X_TRADER API options, specified as a character vector or string scalar using the details
described in Trading Technologies X_TRADER API RTD Tutorial or X_TRADER API Class
Reference.
Data Types: char | string

See Also
createInstrument | createNotifier | createOrderProfile | xtrdr

Topics
“Create an Order Using X_TRADER” on page 1-17
“Listen for X_TRADER Price Updates” on page 4-2
“Listen for X_TRADER Price Market Depth Updates” on page 4-4

 createOrderSet

6-163

“Submit X_TRADER Orders” on page 4-8
“Workflows for Trading Technologies X_TRADER” on page 2-4

External Websites
X_TRADER API

Introduced in R2013a

6 Functions — Alphabetical List

6-164

https://www.tradingtechnologies.com/help/apis/x_trader-api/x_trader-api-resources/

getData
Obtain current X_TRADER data

Syntax
D = getData(X,S,F)
D = getData(X,F)

Description
D = getData(X,S,F) returns data for the fields F for the xtrdr instrument object, S,
with fields corresponding to valid X_TRADER API options. For details, see the Trading
Technologies X_TRADER API RTD Tutorial or X_TRADER API Class Reference.

D = getData(X,F) returns data for the fields F for all instruments associated with the
xtrdr session object, X.

Examples

Return Exchange and Last Price for an Instrument

Return the exchange and last price fields for the instrument defined in
x.Instrument(1).

D = getData(X,X.Instrument(1),{'Exchange','Last'})

D =

 Exchange: {'CME'}
 Last: {'45'}

 getData

6-165

Return Exchange and Last Price for an Alias

Return the exchange and last price fields for the instrument defined by the alias
PriceInstrument1.

D = getData(X,'PriceInstrument1',{'Exchange','Last'})

D =

 Exchange: {'CME'}
 Last: {'45'}

Return Exchange and Last Price for All Session Instruments

Return the exchange and last price fields for all instruments associated with the xtrdr
session object, X.

D = getData(X,{'Exchange','Last'})

D =

 Exchange: {2x1 cell}
 Last: {2x1 cell}

Input Arguments
X — X_TRADER connection
connection object

X_TRADER connection, specified as a connection object created using xtrdr.

S — X_TRADER instrument
instrument object

X_TRADER instrument, specified as an instrument object created using
createInstrument or aliases with fields corresponding to valid X_TRADER API options.
For details, see the Trading Technologies X_TRADER API RTD Tutorial or X_TRADER API
Class Reference.
Example: x.Instrument(1)

6 Functions — Alphabetical List

6-166

F — Fields for the instrument object
character vector | cell array of character vectors | string scalar | string array

Fields for the instrument object or aliases, S, specified as a character vector, cell array of
character vectors, string scalar, or string array. F without a corresponding S are fields for
all instruments associated with the xtrdr session object, X.
Example: {'Exchange','Last'}
Data Types: char | cell | string

Output Arguments
D — X_TRADER data
structure

X_TRADER data, returned as a structure. For missing data, D contains a NaN.

See Also
createInstrument | xtrdr

Topics
“Listen for X_TRADER Price Updates” on page 4-2
“Listen for X_TRADER Price Market Depth Updates” on page 4-4
“Submit X_TRADER Orders” on page 4-8
“Workflows for Trading Technologies X_TRADER” on page 2-4

External Websites
X_TRADER API

Introduced in R2013a

 getData

6-167

https://www.tradingtechnologies.com/help/apis/x_trader-api/x_trader-api-resources/

cqg
Create CQG connection object

Description
The cqg function creates a cqg object, which represents a CQG connection. After you
create a cqg object, you can use the object functions to create orders and retrieve
historical, real-time, and intraday tick data.

Creation

Syntax
c = cqg

Description
c = cqg creates a CQG connection object c.

Properties
Handle — CQG handle
ActiveX object

CQG handle, specified as an ActiveX object.
Example: [1x1 COM.CQG_CQGCEL_4]

APIConfig — API configuration type library specification
configuration object

API configuration type library specification, specified as a configuration object.

6 Functions — Alphabetical List

6-168

Example: [1x1 Interface.CQG_4.0_Type_Library_-
_Revised_API.ICQGAPIConfig]

Object Functions
CQG Connection
startUp Create CQG connection
shutDown Close CQG connection
close Close CQG connection

CQG Order Creation
createOrder Create CQG order

CQG Data Retrieval
history Request CQG historical data
realtime Subscribe to CQG instrument
timeseries Request CQG intraday tick data

Examples

Create CQG Connection Object

Create a CQG connection object.

c = cqg

c =

 cqg with properties:

 Handle: [1x1 COM.CQG_CQGCEL_4]
 APIConfig: [1x1 Interface.CQG_4.0_Type_Library_-_Revised_API.ICQGAPIConfig]

CQG connection object properties reflect the CQG ActiveX object Handle and the API
configuration type library specification APIConfig.

Display the Handle property of c.

c.Handle

 cqg

6-169

ans =

 COM.CQG_CQGCEL_4

After creating the cqg connection object, you can retrieve historical, real-time, and
intraday tick data. For details, see history, realtime, and timeseries, respectively.

Close the CQG connection.

close(c)

See Also

Topics
“Create CQG Orders” on page 4-46
“Request CQG Historical Data” on page 4-52
“Request CQG Intraday Tick Data” on page 4-55
“Request CQG Real-Time Data” on page 4-59
“Workflow for CQG” on page 2-9
“Installation” on page 1-3

External Websites
CQG API Reference Guide

Introduced in R2013b

6 Functions — Alphabetical List

6-170

https://partners.cqg.com/api-resources/technical-documentation

close
Close CQG connection

Syntax
close(c)

Description
close(c) closes CQG connection c.

Examples

Close the CQG Connection

Create the CQG connection object c using cqg.

c = cqg;

Create the CQG connection using startUp.

startUp(c)

Close the connection using the CQG connection object c.

close(c)

Input Arguments
c — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

 close

6-171

See Also
cqg | shutDown

Topics
“Create an Order Using CQG” on page 1-12
“Create CQG Orders” on page 4-46
“Request CQG Historical Data” on page 4-52
“Request CQG Intraday Tick Data” on page 4-55
“Request CQG Real-Time Data” on page 4-59
“Workflow for CQG” on page 2-9

External Websites
CQG API Reference Guide

Introduced in R2013b

6 Functions — Alphabetical List

6-172

https://partners.cqg.com/api-resources/technical-documentation

createOrder
Create CQG order

Syntax
o = createOrder(c,s,1,account,quantity)
o = createOrder(c,s,2,account,quantity,limitprice)
o = createOrder(c,s,3,account,quantity,stopprice)
o = createOrder(c,s,4,account,quantity,limitprice,stopprice)

Description
o = createOrder(c,s,1,account,quantity) creates a CQGOrder object o for a
market order of quantity shares of CQG instrument s using the CQGAccount
credentials object account over the CQG connection c.

o = createOrder(c,s,2,account,quantity,limitprice) creates a limit order
using a CQG limit price limitprice.

o = createOrder(c,s,3,account,quantity,stopprice) creates a stop order
using a CQG stop price stopprice.

o = createOrder(c,s,4,account,quantity,limitprice,stopprice) creates a
stop limit order using CQG limit and stop prices, limitprice and stopprice.

Examples

Create and Place a Market Order Using a CQGInstrument Object

To create and place a market order for shares of an instrument with the CQG Trader Com
API using a CQGInstrument object to specify the instrument, create the connection c
using cqg and startUp. Register an event handler for tracking events associated with
the connection status. Set up the API configuration properties. Then, register event

 createOrder

6-173

handlers for tracking events associated with the instrument subscription, order and
account. Subscribe to the instrument and create the CQGInstrument object cqgInst.
Then, set up the account credentials accountHandle. For an example demonstrating
these activities, see “Create CQG Orders” on page 4-46. See CQG API Reference Guide to
learn more about event handlers, API configuration properties, and CQGInstrument
object.

Create a market order that buys one share of the subscribed security cqgInst using the
account credentials accountHandle.

quantity = 1;

oMarket = createOrder(c,cqgInst,1,accountHandle,quantity);
oMarket.Place

ans =
 OrderChanged

The CQGOrder object oMarket contains the order. The CQG API executes the market
order using the CQG API function Place. After execution, the order status changes.

Close the CQG connection.

shutDown(c)

Create and Place a Market Order Using a CQG Instrument Character Vector

To create and place a market order for shares of an instrument with the CQG Trader Com
API, create the connection c using cqg and startUp. Register an event handler for
tracking events associated with connection status. Set up the API configuration
properties. Then, register event handlers for tracking events associated with instrument
subscription, order, and account. Subscribe to the instrument. Then, set up the account
credentials accountHandle. For an example demonstrating these activities, see “Create
CQG Orders” on page 4-46. To learn more about the event handlers and the API
configuration properties, see the CQG API Reference Guide.

Create a market order that buys one share of the previously subscribed security 'EZC'
using the defined account credentials accountHandle.

cqgInstrumentName = 'EZC';
quantity = 1;

6 Functions — Alphabetical List

6-174

oMarket = createOrder(c,cqgInstrumentName,1,accountHandle, ...
 quantity);
oMarket.Place

ans =
 OrderChanged

The CQGOrder object oMarket contains the order. The CQG API executes the market
order using the CQG API function Place. After execution, the order status changes.

Close the CQG connection.

shutDown(c)

Create and Place a Limit Order

To create and place a limit order for shares of an instrument with the CQG Trader Com
API using a CQGInstrument object to specify the instrument, create the connection c
using cqg and startUp. Register an event handler for tracking events associated with
connection status. Set up the API configuration properties. Then, register event handlers
for tracking events associated with instrument subscription, order and account. Subscribe
to the instrument and create the CQGInstrument object cqgInst. Then, set up the
account credentials accountHandle. For an example demonstrating these activities, see
“Create CQG Orders” on page 4-46. See CQG API Reference Guide to learn more about
the event handlers, the API configuration properties, and the CQGInstrument object.

To create a limit order, you can use the bid price. Extract the CQG bid object qtBid from
the previously defined CQGInstrument object cqgInst.

qtBid = cqgInst.get('Bid');

Create a limit order that buys one share of the previously subscribed security cqgInst
using the previously defined account credentials accountHandle and qtBid for the limit
price.

quantity = 1;
limitprice = qtBid.get('Price');

oLimit = createOrder(c,cqgInst,2,accountHandle,quantity, ...
 limitprice);
oLimit.Place

 createOrder

6-175

ans =
 OrderChanged

The CQGOrder object oLimit contains the order. The CQG API executes the limit order
using the CQG API function Place. After execution, the order status changes.

Close the CQG connection.

shutDown(c)

Create and Place a Stop Order

To create and place a stop order for shares of an instrument with the CQG Trader Com
API using a CQGInstrument object to specify the instrument, create the connection c
using cqg and startUp. Register an event handler for tracking events associated with
connection status. Set up the API configuration properties. Then, register event handlers
for tracking events associated with instrument subscription, order and account. Subscribe
to the instrument and create the CQGInstrument object cqgInst. Then, set up the
account credentials accountHandle. For an example demonstrating these activities, see
“Create CQG Orders” on page 4-46. See CQG API Reference Guide to learn more about
the event handlers, the API configuration properties, and the CQGInstrument object.

To create a stop order, you can use the trade price. Extract the CQG trade object
qtTrade from the previously defined CQGInstrument object cqgInst.

qtTrade = cqgInst.get('Trade');

Create a stop order that buys one share of the previously subscribed security cqgInst
using the previously defined account credentials accountHandle and qtTrade for the
stop price.

quantity = 1;
stopprice = qtTrade.get('Price');

oStop = createOrder(c,cqgInst,3,accountHandle,quantity, ...
 stopprice);
oStop.Place

ans =
 OrderChanged

6 Functions — Alphabetical List

6-176

The CQGOrder object oStop contains the order. The CQG API executes the stop order
using the CQG API function Place. After execution, the order status changes.

Close the CQG connection.

shutDown(c)

Create and Place a Stop Limit Order

To create and place a stop limit order for shares of an instrument with the CQG Trader
Com API using a CQGInstrument object to specify the instrument, create the connection
c using cqg and startUp. Register an event handler for tracking events associated with
connection status. Set up the API configuration properties. Then, register event handlers
for tracking events associated with instrument subscription, order and account. Subscribe
to the instrument and create the CQGInstrument object cqgInst. Then, set up the
account credentials accountHandle. For an example demonstrating these activities, see
“Create CQG Orders” on page 4-46. See CQG API Reference Guide to learn more about
the event handlers, the API configuration properties, and the CQGInstrument object.

To create a stop limit order, you can use the bid and trade prices. Extract the CQG bid
object qtBid and the CQG trade object qtTrade from the previously defined
CQGInstrument object cqgInst.

qtBid = cqgInst.get('Bid');
qtTrade = cqgInst.get('Trade');

Create a stop limit order that buys one share of the subscribed security cqgInst using
the defined account credentials accountHandle and qtBid for the limit price and
qtTrade for the stop price.

quantity = 1;
limitprice = qtBid.get('Price');
stopprice = qtTrade.get('Price');

oStopLimit = createOrder(c,cqgInst,4,accountHandle,quantity, ...
 limitprice,stopprice);
oStopLimit.Place

ans =
 OrderChanged

 createOrder

6-177

The CQGOrder object oStopLimit contains the order. The CQG API executes the stop
limit order using the CQG API function Place. After execution, the order status changes.

Close the CQG connection.

shutDown(c)

Input Arguments
c — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

s — CQG instrument name
character vector | string scalar | CQGInstrument object

CQG instrument name, specified as a character vector, string scalar, or CQGInstrument
object, denoting the instrument or security for the order transaction. For more
information about creating a CQGInstrument object, see the CQG API Reference Guide.
For a list of CQG instrument names, see Tradable Symbols.

account — CQG account credentials
CQGAccount object

CQG account credentials, specified as a CQGAccount object. This object encapsulates all
data pertinent to your account. For more information about creating a CQGAccount
object, see CQG API Reference Guide.

quantity — CQG order quantity
numeric scalar

CQG order quantity, specified as a numeric scalar denoting the number of shares to order.
A positive number denotes a buy and a negative number denotes a sell.
Data Types: double

limitprice — CQG limit price
double

CQG limit price, specified as a double denoting the limit order price.

6 Functions — Alphabetical List

6-178

https://www.cqg.com/partners/exchanges/tradable-symbols

Data Types: double

stopprice — CQG stop price
double

CQG stop price, specified as a double denoting the stop order price.
Data Types: double

Output Arguments
o — CQG order
CQGOrder object

CQG order, returned as a CQGOrder object. This object encapsulates all data necessary to
execute a CQG order. For more information about creating a CQGOrder object, see CQG
API Reference Guide.

See Also
cqg | history | realtime | timeseries

Topics
“Create an Order Using CQG” on page 1-12
“Create CQG Orders” on page 4-46
“Request CQG Historical Data” on page 4-52
“Request CQG Intraday Tick Data” on page 4-55
“Request CQG Real-Time Data” on page 4-59
“Workflow for CQG” on page 2-9

External Websites
CQG API Reference Guide

Introduced in R2013b

 createOrder

6-179

https://partners.cqg.com/api-resources/technical-documentation

history
Request CQG historical data

Syntax
history(c,s,startdate,enddate,period)
history(c,s,startdate,enddate,period,x)

Description
history(c,s,startdate,enddate,period) requests CQG historical data
asynchronously with bar size period between startdate and enddate for CQG
instrument name s with CQG connection c.

history(c,s,startdate,enddate,period,x) requests CQG historical data
asynchronously with additional request properties x.

Examples

Request CQG Historical Data

To request daily historical data for an instrument, create the connection c using cqg and
startUp. Register an event handler for tracking events associated with connection
status. Set up the API configuration properties. Then, register an event handler for
tracking events associated with building and initializing the output data structure. For an
example demonstrating these activities, see “Request CQG Historical Data” on page 4-52.
See CQG API Reference Guide to learn more about event handlers and the API
configuration properties.

Request historical daily data for instrument XYZ.XYZ for the last 10 days. XYZ.XYZ is a
sample instrument name. To request historical data for your instrument, substitute the
symbol name in instrument.

6 Functions — Alphabetical List

6-180

instrument = {'Close(XYZ.XYZ)','Open(XYZ.XYZ)'};
startdate = floor(now) - 10;
enddate = floor(now);
period = 'hpDaily';

history(c,instrument,startdate,enddate,period)
pause(1)

MATLAB writes variable cqgHistoryData to the Workspace browser.

Display cqgHistoryData.

cqgHistoryData

cqgHistoryData =
 1.0e+05 *
 7.3533 0.0063 0.0063
 7.3533 0.0064 0.0064
 7.3533 0.0065 0.0065
 7.3534 0.0065 0.0065
 7.3534 0.0066 0.0066
 7.3534 0.0065 0.0065
 7.3534 0.0066 0.0066
 7.3534 0.0066 0.0066
 7.3534 0.0064 0.0064

Each row in cqgHistoryData represents data for 1 day. The columns in
cqgHistoryData show the numerical representation of the timestamp, the close price,
and the open price for the instrument during the day.

Close the CQG connection.

close(c)

Request CQG Historical Data with Additional Request Properties

To request daily historical data for an instrument with an additional property, create the
connection c using cqg and startUp. Register an event handler for tracking events
associated with connection status. Set up the API configuration properties. Then, register
an event handler for tracking events associated with building and initializing the output
data structure. For an example demonstrating these activities, see “Request CQG
Historical Data” on page 4-52. See CQG API Reference Guide to learn more about event
handlers and the API configuration properties.

 history

6-181

Pass an additional optional request property by creating the structure x and setting the
optional property.

x.UpdatesEnabled = false;

For additional optional properties you can set, see CQG API Reference Guide.

Request historical daily data for instrument XYZ.XYZ for the last 10 days using the
additional optional request property x. XYZ.XYZ is a sample instrument name. To request
historical data for your instrument, substitute the symbol name in instrument.

instrument = {'Close(XYZ.XYZ)','Open(XYZ.XYZ)'};
startdate = floor(now) - 10;
enddate = floor(now);
period = 'hpDaily';

history(c,instrument,startdate,enddate,period,x)
pause(1)

MATLAB writes the variable cqgHistoryData to the Workspace browser.

Display cqgHistoryData.

cqgHistoryData

cqgHistoryData =
 1.0e+05 *
 7.3533 0.0063 0.0063
 7.3533 0.0064 0.0064
 7.3533 0.0065 0.0065
 7.3534 0.0065 0.0065
 7.3534 0.0066 0.0066
 7.3534 0.0065 0.0065
 7.3534 0.0066 0.0066
 7.3534 0.0066 0.0066
 7.3534 0.0064 0.0064

Each row in cqgHistoryData represents data for 1 day. The columns in
cqgHistoryData show the numerical representation of the timestamp, the close price,
and the open price for the instrument during the day.

Close the CQG connection.

6 Functions — Alphabetical List

6-182

close(c)

Input Arguments
c — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

s — CQG instrument name
character vector | string scalar

CQG instrument name, specified as a character vector or string scalar that identifies the
instrument or security. For a list of CQG instrument names, see Tradable Symbols.
Data Types: char | string

startdate — Start date
character vector | string scalar | numeric scalar

Start date, specified as a character vector, string scalar, or numeric scalar.
Data Types: double | char | string

enddate — End date
character vector | string scalar | numeric scalar

End date, specified as a character vector, string scalar, or numeric scalar.
Data Types: double | char | string

period — Bar size
'hpDaily' (default) | 'hpWeekly' | 'hpMonthly' | 'hpQuarterly' |
'hpSemiannual' | 'hpYearly'

Bar size, specified as one of the above values predetermined by the CQG API that denotes
the length of time to collect data.

x — CQG request properties
request properties structure

 history

6-183

https://www.cqg.com/partners/exchanges/tradable-symbols

CQG request properties, specified as a CQG request properties structure. Create this
structure by writing MATLAB code to set additional optional request properties. For
additional optional properties you can set, see CQG API Reference Guide.
Example: x.UpdatesEnabled = false;
Data Types: struct

See Also
cqg | createOrder | realtime | timeseries

Topics
“Create CQG Orders” on page 4-46
“Request CQG Historical Data” on page 4-52
“Request CQG Intraday Tick Data” on page 4-55
“Request CQG Real-Time Data” on page 4-59
“Workflow for CQG” on page 2-9

External Websites
CQG API Reference Guide

Introduced in R2013b

6 Functions — Alphabetical List

6-184

https://partners.cqg.com/api-resources/technical-documentation

realtime
Subscribe to CQG instrument

Syntax
realtime(c,s)

Description
realtime(c,s) subscribes to a CQG instrument s using CQG connection c.

Examples

Subscribe to the CQG Instrument

To subscribe to the CQG instrument and get current data, create the connection c using
cqg and startUp. Register an event handler for tracking events associated with
connection status. Set up the API configuration properties. Then, register an event
handler for tracking events associated with instrument subscription. For an example
demonstrating these activities, see “Request CQG Real-Time Data” on page 4-59. See
CQG API Reference Guide to learn more about event handlers and the API configuration
properties.

With the connection established, subscribe to the instrument. The instrument name must
be formatted in the CQG long symbol view. For example, to subscribe to a security tied to
corn, type the following.

instrument = 'F.US.EZC';
realtime(c,instrument)

MATLAB writes the structure variable cqgDataEZC to the Workspace browser.

Display cqgDataEZC.

 realtime

6-185

cqgDataEZC(1,1)

ans =
 Price: {15x1 cell}
 Volume: {15x1 cell}
 ServerTimestamp: {15x1 cell}
 Timestamp: {15x1 cell}
 Type: {15x1 cell}
 Name: {15x1 cell}
 IsValid: {15x1 cell}
 Instrument: {15x1 cell}
 HasVolume: {15x1 cell}

cqgDataEZC returns the current quotes for the security.

Display data in the Price property of cqgDataEZC.

cqgDataEZC(1,1).Price

ans =
 [-2.1475e+09]
 [-2.1475e+09]
 [-2.1475e+09]
 [660.5000]
 []
 []
 [-2.1475e+09]
 [-2.1475e+09]
 [-2.1475e+09]
 [-2.1475e+09]
 [-2.1475e+09]
 [-2.1475e+09]
 [-2.1475e+09]
 [660.5000]
 [-2.1475e+09]

Close the CQG connection.

close(c)

Input Arguments
c — CQG connection
connection object

6 Functions — Alphabetical List

6-186

CQG connection, specified as a CQG connection object created using cqg.

s — CQG instrument name
character vector | string scalar

CQG instrument name, specified as a character vector or string scalar that identifies the
instrument or security. For a list of CQG instrument names, see Tradable Symbols.
Data Types: char | string

See Also
cqg | createOrder | history | timeseries

Topics
“Create an Order Using CQG” on page 1-12
“Create CQG Orders” on page 4-46
“Request CQG Historical Data” on page 4-52
“Request CQG Intraday Tick Data” on page 4-55
“Request CQG Real-Time Data” on page 4-59
“Workflow for CQG” on page 2-9

External Websites
CQG API Reference Guide

Introduced in R2013b

 realtime

6-187

https://www.cqg.com/partners/exchanges/tradable-symbols
https://partners.cqg.com/api-resources/technical-documentation

shutDown
Close CQG connection

Syntax
shutDown(c)

Description
shutDown(c) closes the CQG connection c.

Examples

Close the CQG Connection

Create the CQG connection object using cqg.

c = cqg;

Create the CQG connection using startUp.

startUp(c)

Close the CQG connection.

shutDown(c)

Alternatively, close the CQG connection using close.

6 Functions — Alphabetical List

6-188

close(c)

Input Arguments
c — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

See Also
close | cqg | startUp

Topics
“Create CQG Orders” on page 4-46
“Request CQG Historical Data” on page 4-52
“Request CQG Intraday Tick Data” on page 4-55
“Request CQG Real-Time Data” on page 4-59
“Workflow for CQG” on page 2-9

External Websites
CQG API Reference Guide

Introduced in R2013b

 shutDown

6-189

https://partners.cqg.com/api-resources/technical-documentation

startUp
Create CQG connection

Syntax
startUp(c)

Description
startUp(c) creates the CQG connection c.

Examples

Create the CQG Connection

Create the CQG connection object using cqg.

c = cqg;

Create the CQG connection.

startUp(c)

Close the CQG connection.

close(c)

Input Arguments
c — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

6 Functions — Alphabetical List

6-190

See Also
close | cqg | shutDown

Topics
“Create an Order Using CQG” on page 1-12
“Create CQG Orders” on page 4-46
“Request CQG Historical Data” on page 4-52
“Request CQG Intraday Tick Data” on page 4-55
“Request CQG Real-Time Data” on page 4-59
“Workflow for CQG” on page 2-9

External Websites
CQG API Reference Guide

Introduced in R2013b

 startUp

6-191

https://partners.cqg.com/api-resources/technical-documentation

timeseries
Request CQG intraday tick data

Syntax
timeseries(c,s,startdate,enddate)
timeseries(c,s,startdate,enddate,[],x)

timeseries(c,s,startdate,enddate,intraday)
timeseries(c,s,startdate,enddate,intraday,x)

Description
timeseries(c,s,startdate,enddate) requests CQG raw intraday tick data
asynchronously between startdate and enddate for CQG instrument name s with CQG
connection c.

timeseries(c,s,startdate,enddate,[],x) requests CQG raw intraday tick data
asynchronously without timed bar data using additional request properties x.

timeseries(c,s,startdate,enddate,intraday) requests CQG timed bar data
asynchronously with the aggregated bar value intraday.

timeseries(c,s,startdate,enddate,intraday,x) requests CQG timed bar data
asynchronously with additional request properties x.

Examples

Request CQG Intraday Tick Data

To request intraday tick data for an instrument, create the connection c using cqg and
startUp. Register an event handler for tracking events associated with connection
status. Set up the API configuration properties. Then, register an event handler for
tracking events associated with building and initializing the output data structure. For an

6 Functions — Alphabetical List

6-192

example demonstrating these activities, see “Request CQG Intraday Tick Data” on page 4-
55. See CQG API Reference Guide to learn more about event handlers and the API
configuration properties.

Request intraday tick data for instrument XYZ.XYZ for the last 2 days. XYZ.XYZ is a
sample instrument name. To request intraday tick data for your instrument, substitute the
symbol name in instrument.

instrument = 'XYZ.XYZ';
startdate = now - 2;
enddate = now;

timeseries(c,instrument,startdate,enddate)

MATLAB writes the structure variable cqgTickData to the Workspace browser.

Display cqgTickData.

cqgTickData

cqgTickData =
 Timestamp: {2x1 cell}
 Price: [2x1 double]
 Volume: [2x1 double]
 PriceType: {2x1 cell}
 CorrectionType: {2x1 cell}
 SalesConditionLabel: {2x1 cell}
 SalesConditionCode: [2x1 double]
 ContributorId: {2x1 cell}
 ContributorIdCode: [2x1 double]
 MarketState: {2x1 cell}

cqgTickData returns intraday tick data for the specified instrument.

Display the data in the Timestamp property of cqgTickData.

cqgTickData.Timestamp

ans =
 '4/17/2013 2:14:00 PM'
 '4/18/2013 2:14:00 PM'

Close the CQG connection.

 timeseries

6-193

close(c)

Request CQG Intraday Tick Data with Additional Properties

To request intraday tick data for an instrument with an additional property, create the
connection c using cqg and startUp. Register an event handler for tracking events
associated with connection status. Set up the API configuration properties. Then, register
an event handler for tracking events associated with building and initializing the output
data structure. For an example demonstrating these activities, see “Request CQG
Intraday Tick Data” on page 4-55. See CQG API Reference Guide to learn more about
event handlers and the API configuration properties.

Pass an additional optional request property by creating the structure x, and setting the
optional property. To see only bid tick data, for example, set TickFilter to 'tfBid'.

x.TickFilter = 'tfBid';

TickFilter and SessionsFilter are the only valid additional optional properties for
calling timeseries without a timed bar request. For additional property values you can
set, see CQG API Reference Guide.

Request intraday tick data for instrument XYZ.XYZ for the last 2 days using the additional
optional request property x. XYZ.XYZ is a sample instrument name. To request intraday
tick data for your instrument, substitute the symbol name in instrument.

instrument = 'XYZ.XYZ';
startdate = now - 2;
enddate = now;

timeseries(c,instrument,startdate,enddate,[],x)

MATLAB writes the variable cqgTickData to the Workspace browser.

Display cqgTickData.

cqgTickData

cqgTickData =
 Timestamp: {2x1 cell}
 Price: [2x1 double]
 Volume: [2x1 double]
 PriceType: {2x1 cell}

6 Functions — Alphabetical List

6-194

 CorrectionType: {2x1 cell}
 SalesConditionLabel: {2x1 cell}
 SalesConditionCode: [2x1 double]
 ContributorId: {2x1 cell}
 ContributorIdCode: [2x1 double]
 MarketState: {2x1 cell}

cqgTickData returns intraday tick data for the specified instrument.

Display the data in the Timestamp property of cqgTickData.

cqgTickData.Timestamp

ans =
 '4/17/2013 2:14:00 PM'
 '4/18/2013 2:14:00 PM'

Close the CQG connection.

close(c)

Request CQG Timed Bar Data

To request timed bar data for an instrument, create the connection c using cqg and
startUp. Register an event handler for tracking events associated with connection
status. Set up the API configuration properties. Then, register an event handler for
tracking events associated with building and initializing the output data structure. For an
example demonstrating these activities, see “Request CQG Intraday Tick Data” on page 4-
55. See CQG API Reference Guide to learn more about event handlers and the API
configuration properties.

Request timed bar data for instrument XYZ.XYZ for the last fraction of a day. XYZ.XYZ is
a sample instrument name. To request timed bar data for your instrument, substitute the
symbol name in instrument.

instrument = 'XYZ.XYZ';
startdate = now - .1;
enddate = now;
intraday = 1;

timeseries(c,instrument,startdate,enddate,intraday)

MATLAB writes variable cqgTimedBarData to the Workspace browser.

 timeseries

6-195

Display cqgTimedBarData.

cqgTimedBarData

cqgTimedBarData =
 1.0e+09 *
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 ...

cqgTimedBarData returns timed bar data for the specified instrument. The columns of
cqgTimedBarData display data corresponding to the timestamp, open price, high price,
low price, close price, mid-price, HLC3, average price, and tick volume.

Close the CQG connection.

close(c)

Request CQG Timed Bar Data with Additional Properties

To request timed bar data for an instrument with an additional property, create the
connection c using cqg and startUp. Register an event handler for tracking events
associated with connection status. Set up the API configuration properties. Then, register
an event handler for tracking events associated with building and initializing the output
data structure. For an example demonstrating these activities, see “Request CQG
Intraday Tick Data” on page 4-55. See CQG API Reference Guide to learn more about
event handlers and the API configuration properties.

Pass an additional optional request property by creating the structure x, and setting the
optional property.

x.UpdatesEnabled = false;

For additional optional properties you can set, see CQG API Reference Guide.

Request timed bar data for instrument XYZ.XYZ for the last fraction of a day using the
additional optional request property x. XYZ.XYZ is a sample instrument name. To request
timed bar data for your instrument, substitute the symbol name in instrument.

instrument = 'XYZ.XYZ';
startdate = now - .1;

6 Functions — Alphabetical List

6-196

enddate = now;
intraday = 1;

timeseries(c,instrument,startdate,enddate,intraday,x)

MATLAB writes the variable cqgTimedBarData to the Workspace browser.

Display cqgTimedBarData.

cqgTimedBarData

cqgTimedBarData =
 1.0e+09 *
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 0.0007 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475 -2.1475
 ...

cqgTimedBarData returns timed bar data for the specified instrument. The columns of
cqgTimedBarData display data corresponding to the timestamp, open price, high price,
low price, close price, mid-price, HLC3, average price, and tick volume.

Close the CQG connection.

close(c)

Input Arguments
c — CQG connection
connection object

CQG connection, specified as a CQG connection object created using cqg.

s — CQG instrument name
character vector | string scalar

CQG instrument name, specified as a character vector or string scalar that identifies the
instrument or security. For a list of CQG instrument names, see Tradable Symbols.
Data Types: char | string

startdate — Start date
character vector | string scalar | numeric scalar

 timeseries

6-197

https://www.cqg.com/partners/exchanges/tradable-symbols

Start date, specified as a character vector, string scalar, or numeric scalar.
Data Types: double | char | string

enddate — End date
character vector | string scalar | numeric scalar

End date, specified as a character vector, string scalar, or numeric scalar.
Data Types: double | char | string

intraday — Aggregated bar value
numeric scalar | []

Aggregated bar value, specified as a numeric scalar from 1.0 to 1440.0. If you want to call
timeseries to return intraday tick data with additional properties without timed bar
data, then enter [] for this argument.
Data Types: double

x — CQG request properties
request properties structure

CQG request properties, specified as a CQG request properties structure. Create this
structure by writing MATLAB code to set additional optional request properties. For
additional optional properties you can set, see CQG API Reference Guide.
Example: x.UpdatesEnabled = false;
Data Types: struct

See Also
cqg | createOrder | history | realtime

Topics
“Create CQG Orders” on page 4-46
“Request CQG Historical Data” on page 4-52
“Request CQG Intraday Tick Data” on page 4-55
“Request CQG Real-Time Data” on page 4-59
“Workflow for CQG” on page 2-9

6 Functions — Alphabetical List

6-198

External Websites
CQG API Reference Guide

Introduced in R2013b

 timeseries

6-199

https://partners.cqg.com/api-resources/technical-documentation

ibtws
Create IB Trader Workstation connection

Description
The ibtws function creates an ibtws object, which represents an IB Trader Workstation
connection. After you create an ibtws object, you can use the object functions to retrieve
data, create orders, and obtain account and portfolio information.

Creation

Syntax
ib = ibtws(host,port)
ib = ibtws(host,port,clientid)

Description
ib = ibtws(host,port) creates a connection to IB Trader Workstation and sets the
Host and Port properties.

ib = ibtws(host,port,clientid) also sets the ClientId property.

Properties
Host — IP address
'' | character vector | string scalar

IP address of the machine where IB Trader Workstation is running, specified as '', a
character vector, or a string scalar. '' specifies the local machine. A character vector or
string scalar specifies the IP address of another machine.
Example: '1111.222.333.44'

6 Functions — Alphabetical List

6-200

Data Types: char | string

Port — IB Trader Workstation port number
numeric scalar

IB Trader Workstation port number, specified as a numeric scalar designating the
connection port of the machine.
Example: 7496
Data Types: double

ClientId — IB Trader Workstation client identifier
0 (default) | numeric scalar

IB Trader Workstation client identifier, specified as a numeric scalar designating the
client machine. This number must be unique to the client.
Example: 0
Data Types: double

Handle — Handle
Interactive Brokers ActiveX object

Handle, specified as an Interactive Brokers ActiveX object.
Example: [1x1 COM.TWS_TwsCtrl_1]

Object Functions

Connection and Data Retrieval
getdata Request current Interactive Brokers data
history Request Interactive Brokers historical data
marketdepth Request Interactive Brokers market depth data
realtime Request Interactive Brokers real-time data
timeseries Request Interactive Brokers aggregated intraday data
close Close IB Trader Workstation connection

Order Management
createOrder Create IB Trader Workstation order

 ibtws

6-201

executions Request Interactive Brokers execution data
orderid Obtain next valid order identification number
orders Request Interactive Brokers open order data

Account and Portfolio Information
accounts Retrieve Interactive Brokers account information
contractdetails Request Interactive Brokers contract details
portfolio Retrieve current Interactive Brokers portfolio data

Examples

Connect to IB Trader Workstation on Local Machine

Create an IB Trader Workstation℠ connection on the local machine and request current
data for the IBM® security.

Connect to the IB Trader Workstation using port number 7496.

ib = ibtws('',7496)

ib =

 ibtws with properties:

 ClientId: 0
 Handle: [1×1 COM.TWS_TwsCtrl]
 Host: ''
 Port: 7496

MATLAB® returns ib as the IB Trader Workstation connection with the Interactive
Brokers® ActiveX® object, local host, and specified port number.

Display the Handle property of ib.

ib.Handle

ans =

6 Functions — Alphabetical List

6-202

 COM.TWS_TwsCtrl

Create the IB Trader Workstation IContract object for IBM. This object describes a
security with values for these properties:

• Security symbol
• Stock security type
• Aggregate exchange
• Primary exchange
• USD currency

ibContract = ib.Handle.createContract;
ibContract.symbol = 'IBM';
ibContract.secType = 'STK';
ibContract.exchange = 'SMART';
ibContract.primaryExchange = 'IEX';
ibContract.currency = 'USD';

Format output data for currency.

format bank

Request current data using ibContract.

d = getdata(ib,ibContract)

d =

 struct with fields:

 LAST_PRICE: 152.50
 LAST_SIZE: 1.00
 VOLUME: 31156.00
 BID_PRICE: 152.48
 BID_SIZE: 1.00
 ASK_PRICE: 152.51
 ASK_SIZE: 1.00

Display the data in the BID_PRICE field of the structure d.

 ibtws

6-203

d.BID_PRICE

ans =

 152.48

Close the IB Trader Workstation connection.

close(ib)

Connect to IB Trader Workstation on Another Machine

Note The IP address for this example does not represent a real Interactive Brokers
machine.

Connect to the IB Trader Workstation on another machine using the IP address
1111.222.333.44 and the port number 7496.

ib = ibtws('1111.222.333.44',7496)

ib =

 ibtws with properties:

 ClientId: 0
 Handle: [1x1 COM.TWS_TwsCtrl_1]
 Host: '1111.222.333.44'
 Port: 7496

MATLAB returns ib as the connection to the IB Trader Workstation with the Interactive
Brokers ActiveX object, specified IP address, and specified port number.

Display the Handle property of ib.

ib.Handle

ans =

 COM.TWS_TwsCtrl_1

6 Functions — Alphabetical List

6-204

Close the IB Trader Workstation connection.

close(ib)

Connect to IB Trader Workstation Using Client Identifier

Create an IB Trader Workstation℠ connection on the local machine and request current
data for the IBM® security.

Connect to the IB Trader Workstation using the port number 7496 and the client
identifier 1.

ib = ibtws('',7496,1)

ib =

 ibtws with properties:

 ClientId: 1
 Handle: [1×1 COM.TWS_TwsCtrl]
 Host: ''
 Port: 7496

MATLAB® returns ib as the IB Trader Workstation connection with the client identifier,
Interactive Brokers® ActiveX® object, local host, and specified port number.

Display the ClientId property of ib.

ib.ClientId

ans =

 1

Format output data for currency.

format bank

Create the IB Trader Workstation IContract object for IBM. This object describes a
security with these values for these properties:

 ibtws

6-205

• Security symbol
• Stock security type
• Aggregate exchange
• Primary exchange
• USD currency

ibContract = ib.Handle.createContract;
ibContract.symbol = 'IBM';
ibContract.secType = 'STK';
ibContract.exchange = 'SMART';
ibContract.primaryExchange = 'IEX';
ibContract.currency = 'USD';

Request current data using ibContract.

d = getdata(ib,ibContract)

d =

 struct with fields:

 LAST_PRICE: 152.38
 LAST_SIZE: 1.00
 VOLUME: 32283.00
 BID_PRICE: 152.37
 BID_SIZE: 3.00
 ASK_PRICE: 152.40
 ASK_SIZE: 1.00

Display the data in the BID_PRICE field of the structure d.

d.BID_PRICE

ans =

 152.37

Close the IB Trader Workstation connection.

6 Functions — Alphabetical List

6-206

close(ib)

Tips
If the variable ibBuiltInErrMsg appears in the MATLAB workspace, check the status of
the connection and function execution by displaying the contents of this variable.
ibBuiltInErrMsg contains messages related to:

• Connection
• Information resulting from executing functions
• Errors

See Also

Topics
“Create an Order Using IB Trader Workstation” on page 1-8
“Create Interactive Brokers Combination Order” on page 4-40
“Create and Manage an Interactive Brokers Order” on page 4-27
“Request Interactive Brokers Historical Data” on page 4-33
“Request Interactive Brokers Real-Time Data” on page 4-36
“Workflow for Interactive Brokers” on page 2-6

External Websites
Interactive Brokers API Reference Guide

Introduced in R2013b

 ibtws

6-207

https://www.interactivebrokers.com/en/software/api/api.htm

close
Close IB Trader Workstation connection

Syntax
close(ib)

Description
close(ib) closes the IB Trader Workstation connection ib.

Examples

Close IB Trader Workstation℠ Connection

Create an IB Trader Workstation℠ connection on the local machine, request current data
for a security, and close the connection.

Connect to the IB Trader Workstation℠ using port number 7496.

ib = ibtws('',7496)

ib =

 ibtws with properties:

 ClientId: 0
 Handle: [1×1 COM.TWS_TwsCtrl_1]
 Host: ''
 Port: 7496

MATLAB® returns ib as the IB Trader Workstation℠ connection with the Interactive
Brokers® ActiveX® object, the local host, and the specified port number.

6 Functions — Alphabetical List

6-208

Display the Handle property of ib.

ib.Handle

ans =

 COM.TWS_TwsCtrl_1

Create the IB Trader Workstation℠ IContract object for IBM®. This object describes a
security with these property values:

• Security symbol
• Stock security type
• Aggregate exchange
• Primary exchange
• USD currency

ibContract = ib.Handle.createContract;
ibContract.symbol = 'IBM';
ibContract.secType = 'STK';
ibContract.exchange = 'SMART';
ibContract.primaryExchange = 'IEX';
ibContract.currency = 'USD';

Request current data using ibContract.

d = getdata(ib,ibContract)

d =

 struct with fields:

 BID_PRICE: 160.1900
 BID_SIZE: 2
 ASK_PRICE: 160.2500
 ASK_SIZE: 2
 LAST_PRICE: 160.2200
 LAST_SIZE: 1
 VOLUME: 2877

 close

6-209

d is a structure containing these fields:

• BID_PRICE -- Bid price
• BID_SIZE -- Bid size
• ASK_PRICE -- Ask price
• ASK_SIZE -- Ask size
• LAST_PRICE -- Last price
• LAST_SIZE -- Last size
• VOLUME -- Volume

Display the data in the BID_PRICE field of d.

d.BID_PRICE

ans =

 160.1900

Close the IB Trader Workstation℠ connection.

close(ib)

Input Arguments
ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

See Also
getdata | ibtws

Topics
“Create an Order Using IB Trader Workstation” on page 1-8

6 Functions — Alphabetical List

6-210

“Create Interactive Brokers Combination Order” on page 4-40
“Create and Manage an Interactive Brokers Order” on page 4-27
“Request Interactive Brokers Historical Data” on page 4-33
“Request Interactive Brokers Real-Time Data” on page 4-36
“Workflow for Interactive Brokers” on page 2-6

External Websites
Interactive Brokers API Reference Guide

Introduced in R2013b

 close

6-211

https://www.interactivebrokers.com/en/software/api/api.htm

createOrder
Create IB Trader Workstation order

Syntax
d = createOrder(ib,ibContract,ibOrder,id)
d = createOrder(ib,ibContract,ibOrder,id,eventhandler)

Description
d = createOrder(ib,ibContract,ibOrder,id) creates an IB Trader Workstation
order over the IB Trader Workstation connection ib using the IB Trader Workstation
IOrder object ibOrder with a unique order identifier id to denote the order
information. createOrder uses the IB Trader Workstation IContract object
ibContract to signify the instrument for the transaction. createOrder returns the
Interactive Brokers order data d containing data about the completed order.

d = createOrder(ib,ibContract,ibOrder,id,eventhandler) creates an IB
Trader Workstation order using an event handler function eventhandler. Use the
sample event handler ibExampleEventHandler or write a custom event handler
function.

Examples

Create an Order

To create an order, set up the IB Trader Workstation connection ib using ibtws. Create
an IB Trader Workstation IContract object ibContract. An IContract object is an
Interactive Brokers object for containing the data about a security to process
transactions. Then, create an IB Trader Workstation IOrder object ibOrder. An IOrder
object is an Interactive Brokers object that contains the order conditions to place an
order. For an example showing how to create these objects, see “Create and Manage an
Interactive Brokers Order” on page 4-27. For details about creating these objects, see
Interactive Brokers API Reference Guide.

6 Functions — Alphabetical List

6-212

https://www.interactivebrokers.com/en/software/api/api.htm

Obtain the next valid order identification number id using ib.

id = orderid(ib)

id =

 54110686

Execute the order using ib, ibContract, ibOrder, and id. This code assumes a buy
market order for two shares.

d = createOrder(ib,ibContract,ibOrder,id)

d =
 STATUS: 'Filled'
 FILLED: 2
 REMAINING: 0
 AVG_FILL_PRICE: 787.5600
 PERM_ID: '1979798454'
 PARENT_ID: 0
 LAST_FILL_PRICE: 787.5600
 CLIENT_ID: 0
 WHY_HELD: ''

d contains these fields:

• Status
• Filled
• Remaining
• Average fill price
• Permanent identifier
• Parent identifier
• Last fill price
• Client identifier
• Why held

Display the data in the STATUS property of d.

d(1,1).STATUS

ans =
 Filled

 createOrder

6-213

Close the IB Trader Workstation connection.

 close(ib)

Create an Order Using an Event Handler

To create an order, set up the IB Trader Workstation connection ib using ibtws. Create
an IB Trader Workstation IContract object ibContract. An IContract object is an
Interactive Brokers object for containing the data about a security to process
transactions. Then, create an IB Trader Workstation IOrder object ibOrder. An IOrder
object is an Interactive Brokers object that contains the order conditions to place an
order. For an example showing how to create these objects, see “Create and Manage an
Interactive Brokers Order” on page 4-27. For details about creating these objects, see
Interactive Brokers API Reference Guide.

Obtain the next valid order identification number id using ib.

id = orderid(ib)

id =

 768409.00

Execute the order using ib, ibContract, ibOrder, and id. This code assumes a buy
market order for two shares. Use the sample event handler function
ibExampleEventHandler or write a custom event handler function.

d = createOrder(ib,ibContract,ibOrder,id,@ibExampleEventHandler)

d =

 768409.00

 Columns 1 through 5

 [1x1 COM.TWS_TwsCtrl_1] [13.00] [768409.00] 'Submitted' [0]

 Columns 6 through 12

 [2.00] [0] [1679681704.00] [0] [0] [0] ''

 Columns 13 through 14

 [1x1 struct] 'orderStatus'
 ...

d contains the unique order identifier id.

6 Functions — Alphabetical List

6-214

https://www.interactivebrokers.com/en/software/api/api.htm

ibExampleEventHandler displays order status data in the Command Window. The
columns are:

• Interactive Brokers ActiveX object
• Event identifier
• Unique order identifier
• Order status
• Filled
• Remaining
• Average fill price
• Permanent identifier
• Parent identifier
• Last fill price
• Client identifier
• Why held
• Structure that repeats the contents of the columns
• Event type

For details about this data, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.

 close(ib)

Input Arguments
ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract object.
This object is the instrument or security used in the order transaction. Create this object

 createOrder

6-215

https://www.interactivebrokers.com/en/software/api/api.htm

by calling the Interactive Brokers API function createContract. For details about
createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

ibOrder — IB Trader Workstation order
IOrder object

IB Trader Workstation order, specified as an IB Trader Workstation IOrder object. This
object contains the order conditions, which are: the action of the order, for example, buy
or sell; the order quantity; and the type of order, for example, market or limit. Create this
object by calling the Interactive Brokers API function createOrder. For details about the
attributes that you can set and createOrder, see Interactive Brokers API Reference
Guide.

id — IB Trader Workstation order unique identifier
numeric scalar

IB Trader Workstation order unique identifier, specified as a numeric scalar.
Data Types: double

eventhandler — Event handler
function handle | character vector | string scalar

Event handler, specified as a function handle, character vector, or string scalar to identify
an event handler function that processes the returned data. Use the sample event handler
or write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-28.
Example: @eventhandler
Data Types: function_handle | char | string

Output Arguments
d — Interactive Brokers order data
structure | double

Interactive Brokers order data, returned as a structure containing these fields:

• Status

6 Functions — Alphabetical List

6-216

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

• Filled
• Remaining
• Average fill price
• Permanent identifier
• Parent identifier
• Last fill price
• Client identifier
• Why held

When using an event handler function, d is a double containing the unique order
identifier.

Tips
If the variable ibBuiltInErrMsg appears in the MATLAB workspace, check the status of
the connection and function execution by displaying the contents of this variable.
ibBuiltInErrMsg contains messages related to:

• Connection
• Information resulting from executing functions
• Errors

See Also
close | getdata | history | ibtws | orderid | realtime | timeseries

Topics
“Create an Order Using IB Trader Workstation” on page 1-8
“Create Interactive Brokers Combination Order” on page 4-40
“Create and Manage an Interactive Brokers Order” on page 4-27
“Request Interactive Brokers Historical Data” on page 4-33
“Request Interactive Brokers Real-Time Data” on page 4-36
“Workflow for Interactive Brokers” on page 2-6
“Writing and Running Custom Event Handler Functions with Interactive Brokers” on page
1-28

 createOrder

6-217

External Websites
Interactive Brokers API Reference Guide

Introduced in R2013b

6 Functions — Alphabetical List

6-218

https://www.interactivebrokers.com/en/software/api/api.htm

getdata
Request current Interactive Brokers data

Syntax
d = getdata(ib,ibContract)
d = getdata(ib,ibContract,eventhandler)

Description
d = getdata(ib,ibContract) requests Interactive Brokers current data over the IB
Trader Workstation connection ib using the IB Trader Workstation IContract object
ibContract to signify the instrument.

d = getdata(ib,ibContract,eventhandler) requests Interactive Brokers current
data using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

Request Current Data

To request Interactive Brokers current data, set up the IB Trader Workstation connection
ib using ibtws. Create an IB Trader Workstation IContract object ibContract as
shown in “Request Interactive Brokers Real-Time Data” on page 4-36. An IContract
object is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API Reference
Guide.

Request current data using ib and ibContract.

d = getdata(ib,ibContract)

d =

 getdata

6-219

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

 LAST_PRICE: 6.85
 LAST_SIZE: 1.00
 VOLUME: 187.00
 BID_PRICE: 6.84
 BID_SIZE: 14.00
 ASK_PRICE: 6.86
 ASK_SIZE: 13.00

d contains these fields:

• Last price
• Last size
• Volume
• Bid price
• Bid size
• Ask price
• Ask size

Display the data in the BID_PRICE field of d.

d.BID_PRICE

ans =
 6.84

Close the IB Trader Workstation connection.

 close(ib)

Request Current Data Using an Event Handler

To request Interactive Brokers current data, set up the IB Trader Workstation connection
ib using ibtws. Create an IB Trader Workstation IContract object ibContract as
shown in “Request Interactive Brokers Real-Time Data” on page 4-36. An IContract
object is an Interactive Brokers object for containing the data about a security to process
transactions. For details about creating this object, see Interactive Brokers API Reference
Guide.

6 Functions — Alphabetical List

6-220

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

Request current data using ib, ibContract, and sample event handler function
ibExampleEventHandler. Use ibExampleEventHandler or write a custom event
handler function.

d = getdata(ib,ibContract,@ibExampleEventHandler)

d =

 1418.00

 Columns 1 through 5

 [1x1 COM.TWS_TwsCtrl_1] [2.00] [1418.00] [0] [5.00]

 Columns 6 through 7

 [1x1 struct] 'tickSize'
 ...

d is the request identifier.

After d, ibExampleEventHandler streams current data to the Command Window. Each
column set is a type of tick.

For a size tick, the columns are:

• Interactive Brokers ActiveX object
• Event identifier
• Request identifier
• Tick type
• Size
• Structure that repeats the contents of the columns
• Event type

Close the IB Trader Workstation connection.

 getdata

6-221

 close(ib)

Input Arguments
ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract object.
This object is the instrument or security used in the order transaction. Create this object
by calling the Interactive Brokers API function createContract. For details about
createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

eventhandler — Event handler
function handle | character vector | string scalar

Event handler, specified as a function handle, character vector, or string scalar to identify
an event handler function that processes the returned data. Use the sample event handler
or write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-28.
Example: @eventhandler
Data Types: function_handle | char | string

Output Arguments
d — Interactive Brokers current data
structure | double

Interactive Brokers current data, returned as a structure containing these tick types:

• Last price

6 Functions — Alphabetical List

6-222

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

• Last size
• Volume
• Bid price
• Bid size
• Ask price
• Ask size

When using an event handler function, d is a double denoting the request identifier.

Tips
If the variable ibBuiltInErrMsg appears in the MATLAB workspace, check the status of
the connection and function execution by displaying the contents of this variable.
ibBuiltInErrMsg contains messages related to:

• Connection
• Information resulting from executing functions
• Errors

See Also
close | createOrder | history | ibtws | realtime | timeseries

Topics
“Create an Order Using IB Trader Workstation” on page 1-8
“Create Interactive Brokers Combination Order” on page 4-40
“Create and Manage an Interactive Brokers Order” on page 4-27
“Request Interactive Brokers Historical Data” on page 4-33
“Request Interactive Brokers Real-Time Data” on page 4-36
“Workflow for Interactive Brokers” on page 2-6
“Writing and Running Custom Event Handler Functions with Interactive Brokers” on page
1-28

External Websites
Interactive Brokers API Reference Guide

 getdata

6-223

https://www.interactivebrokers.com/en/software/api/api.htm

Introduced in R2013b

6 Functions — Alphabetical List

6-224

history
Request Interactive Brokers historical data

Syntax
d = history(ib,ibContract,startdate,enddate)
d = history(ib,ibContract,startdate,enddate,ticktype,period)
d = history(ib,ibContract,startdate,enddate,ticktype,period,
tradehours)
d = history(ib,ibContract,startdate,enddate,ticktype,period,
tradehours,eventhandler)

Description
d = history(ib,ibContract,startdate,enddate) requests Interactive Brokers
historical data using the IB Trader Workstation connection ib and IB Trader Workstation
IContract object ibContract to signify the instrument. history requests data from
startdate through enddate. The default tick type is 'TRADES' and default period is '1
day'.

d = history(ib,ibContract,startdate,enddate,ticktype,period) requests
Interactive Brokers historical data for a specific type of market data tick ticktype and
bar size period.

d = history(ib,ibContract,startdate,enddate,ticktype,period,
tradehours) requests Interactive Brokers historical data using the flag tradehours to
include all data or only data within regular trading hours.

d = history(ib,ibContract,startdate,enddate,ticktype,period,
tradehours,eventhandler) requests Interactive Brokers historical data using an
event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

 history

6-225

Request Interactive Brokers Historical Data with TRADES Default Tick Type and
1-Day Default Period

To request historical data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Historical Data” on page 4-33. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 5 days of historical data using ib and ibContract.

startdate = floor(now)-5;
enddate = floor(now);

d = history(ib,ibContract,startdate,enddate)

d =

 Columns 1 through 5

 736308.00 751.83 755.85 743.83 749.46
 736309.00 742.69 745.71 736.75 738.20
 736312.00 743.08 748.73 724.17 748.48
 736313.00 752.50 758.08 744.43 747.65

 Columns 6 through 9

 12513.00 9107.00 751.28 0
 15984.00 11121.00 740.39 0
 17125.00 11355.00 736.61 0
 2139.00 2568.00 751.29 0

d returns the historical data for 5 days. When ticktype and period are not specified as
input arguments, history returns historical data using the default ticktype of
'TRADES' and the default period of '1 day'.

Each row of d contains historical data for 1 day. The columns in matrix d are:

• Numeric representation of a date
• Open price
• High price
• Low price
• Close price
• Volume
• Bar count

6 Functions — Alphabetical List

6-226

https://www.interactivebrokers.com/en/software/api/api.htm

• Weighted average price
• Flag indicating if there are gaps in the bar

Display the open price for the most recent record in matrix d.

d(1,2)

ans =

 751.83

Close the IB Trader Workstation connection.

 close(ib)

Request Interactive Brokers Historical Data with BID Tick Type and 1-Week
Period

To request historical data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Historical Data” on page 4-33. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 50 days of historical data using ib, ibContract, and these arguments:

• Start date is 50 days ago.
• End date is the current moment.
• Tick type is 'BID'.
• Bar size is '1W'.

startdate = floor(now)-50;
enddate = floor(now);
ticktype = 'BID';
period = '1W';

d = history(ib,ibContract,startdate,enddate,ticktype,period)

d =

 Columns 1 through 5

 history

6-227

https://www.interactivebrokers.com/en/software/api/api.htm

 736267.00 699.28 720.36 695.10 710.50
 736274.00 710.35 739.20 703.18 732.77
 736281.00 730.00 740.92 711.99 711.99
 736288.00 713.05 757.73 706.00 756.35
 736295.00 755.30 762.70 737.52 748.56
 736302.00 749.33 775.81 740.00 766.15
 736309.00 765.00 768.18 735.57 738.20
 736312.00 738.87 757.77 700.00 747.84

 Columns 6 through 9

 -1.00 -1.00 -1.00 0
 -1.00 -1.00 -1.00 0
 -1.00 -1.00 -1.00 0
 -1.00 -1.00 -1.00 0
 -1.00 -1.00 -1.00 0
 -1.00 -1.00 -1.00 0
 -1.00 -1.00 -1.00 0
 -1.00 0 -1.00 0

d returns the historical data for 50 days.

Each row of d contains historical data for 1 week.

The columns in matrix d are:

• Numeric representation of a date
• Open price
• High price
• Low price
• Close price
• Volume
• Bar count
• Weighted average price
• Flag indicating if there are gaps in the bar

Display the high price for the most recent record in matrix d.

d(1,3)

ans =

 720.36

Close the IB Trader Workstation connection.

6 Functions — Alphabetical List

6-228

 close(ib)

Request Interactive Brokers Historical Data with TRADES Default Tick Type and
1-Month Period

To request historical data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Historical Data” on page 4-33. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 50 days of historical data using ib, ibContract, and these arguments:

• Start date is 50 days ago.
• End date is the current moment.
• The empty character vector denotes the default tick type 'TRADES'.
• Bar size is '1M'.

startdate = floor(now)-50;
enddate = floor(now);
ticktype = '';
period = '1M';

d = history(ib,ibContract,startdate,enddate,ticktype,period)

d =

 Columns 1 through 5

 736267.00 661.18 738.42 641.64 710.85
 736298.00 712.00 762.71 705.85 742.60
 736312.00 745.50 775.96 724.17 748.73

 Columns 6 through 9

 186268.00 127222.00 692.28 0
 234490.00 160672.00 734.32 0
 151754.00 102702.00 754.11 0

d returns the historical data for 50 days.

Each row of d contains historical data for 1 month.

The columns in matrix d are:

 history

6-229

https://www.interactivebrokers.com/en/software/api/api.htm

• Numeric representation of a date
• Open price
• High price
• Low price
• Close price
• Volume
• Bar count
• Weighted average price
• Flag indicating if there are gaps in the bar

Display the low price for the most recent record in matrix d.

d(1,4)

ans =

 641.64

Close the IB Trader Workstation connection.

 close(ib)

Request Interactive Brokers Historical Data Within Regular Trading Hours

To request historical data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Historical Data” on page 4-33. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 50 days of historical data using ib, ibContract, and these arguments:

• Start date is 50 days ago.
• End date is the current moment.
• The empty character vector denotes the default tick type 'TRADES'.
• Bar size is '1M'.

6 Functions — Alphabetical List

6-230

https://www.interactivebrokers.com/en/software/api/api.htm

• Within regular trading hours.

startdate = floor(now)-50;
enddate = floor(now);
ticktype = '';
period = '1M';
tradehours = true;

d = history(ib,ibContract,startdate,enddate,ticktype,period,...
 tradehours)

d =

 Columns 1 through 5

 736267.00 661.18 730.00 641.73 710.81
 736298.00 711.21 762.71 705.85 742.60
 736312.00 747.11 775.96 724.17 748.73

 Columns 6 through 9

 169656.00 125271.00 691.49 0
 210536.00 160260.00 734.41 0
 135075.00 102377.00 753.82 0

d returns the historical data for 50 days.

Each row of d contains historical data for 1 month.

The columns in matrix d are:

• Numeric representation of a date
• Open price
• High price
• Low price
• Close price
• Volume
• Bar count
• Weighted average price
• Flag indicating if there are gaps in the bar

Display the low price for the most recent record in matrix d.

d(1,4)

 history

6-231

ans =

 641.73

Close the IB Trader Workstation connection.

 close(ib)

Request Interactive Brokers Historical Data Using an Event Handler

To request historical data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Historical Data” on page 4-33. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request the last 50 days of historical data using ib, ibContract, and these arguments:

• Start date is 50 days ago.
• End date is the current moment.
• The empty character vector denotes the default tick type 'TRADES'.
• Bar size is '1M'.
• Within regular trading hours.
• Sample event handler function ibExampleEventHandler.

Use ibExampleEventHandler or write a custom event handler function.

startdate = floor(now)-50;
enddate = floor(now);
ticktype = '';
period = '1M';
tradehours = true;
eventhandler = 'ibExampleEventHandler';

d = history(ib,ibContract,startdate,enddate,ticktype,period,...
 tradehours,eventhandler)

d =

 9157.00

 Columns 1 through 4

6 Functions — Alphabetical List

6-232

https://www.interactivebrokers.com/en/software/api/api.htm

 [1x1 COM.TWS_TwsCtrl_1] [22.00] [9157.00] '20151030'

 Columns 5 through 9

 [661.18] [730.00] [641.73] [710.81] [169656.00]

 Columns 10 through 14

 [125271.00] [691.49] [0] [1x1 struct] 'historicalData'
 ...

d is the request identifier.

After d, ibExampleEventHandler streams historical data to the Command Window. The
columns are:

• Interactive Brokers ActiveX object
• Event identifier
• Request identifier
• Date
• Open price
• High price
• Low price
• Close price
• Volume
• Bar count
• Weighted average price
• Flag indicating if there are gaps in the bar
• Structure that repeats the contents of the columns
• Event type

Close the IB Trader Workstation connection.

 close(ib)

Input Arguments
ib — IB Trader Workstation connection
connection object

 history

6-233

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract object.
This object is the instrument or security used in the order transaction. Create this object
by calling the Interactive Brokers API function createContract. For details about
createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

startdate — Start date
character vector | string scalar | numeric scalar

Start date, specified as a character vector, string scalar, or numeric scalar.
Data Types: double | char | string

enddate — End date
character vector | string scalar | numeric scalar

End date, specified as a character vector, string scalar, or numeric scalar.
Data Types: double | char | string

ticktype — Types of market data ticks
'TRADES' (default) | 'MIDPOINT' | 'BID' | 'ASK' | 'BID_ASK' |
'HISTORICAL_VOLATILITY' | 'OPTION_IMPLIED_VOLATILITY'

Types of market data ticks, specified as one of the preceding values predetermined by the
Interactive Brokers API that denote tick values to collect.

period — Bar size
'1 day' (default) | '1W' | '1M'

Bar size, specified as one of the preceding values predetermined by the Interactive
Brokers API that denotes the periodicity for collecting data.

tradehours — Trading hours
false (default) | true

6 Functions — Alphabetical List

6-234

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

Trading hours, specified as the logical true or false. When this flag is set to true, this
function returns data only within regular trading hours. Otherwise, this function returns
all data.
Data Types: logical

eventhandler — Event handler
function handle | character vector | string scalar

Event handler, specified as a function handle, character vector, or string scalar to identify
an event handler function that processes the returned data. Use the sample event handler
or write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-28.
Example: @eventhandler
Data Types: function_handle | char | string

Output Arguments
d — Interactive Brokers historical data
matrix | double

Interactive Brokers historical data, returned as a matrix with these columns:

• Numeric representation of a date
• Open price
• High price
• Low price
• Close price
• Volume
• Bar count
• Weighted average price
• Flag indicating if there are gaps in the bar

When using an event handler function, d is a double denoting the request identifier.

 history

6-235

Tips
If the variable ibBuiltInErrMsg appears in the MATLAB workspace, check the status of
the connection and function execution by displaying the contents of this variable.
ibBuiltInErrMsg contains messages related to:

• Connection
• Information resulting from executing functions
• Errors

See Also
close | createOrder | getdata | ibtws | realtime | timeseries

Topics
“Create an Order Using IB Trader Workstation” on page 1-8
“Create Interactive Brokers Combination Order” on page 4-40
“Create and Manage an Interactive Brokers Order” on page 4-27
“Request Interactive Brokers Historical Data” on page 4-33
“Request Interactive Brokers Real-Time Data” on page 4-36
“Workflow for Interactive Brokers” on page 2-6
“Writing and Running Custom Event Handler Functions with Interactive Brokers” on page
1-28

External Websites
Interactive Brokers API Reference Guide

Introduced in R2013b

6 Functions — Alphabetical List

6-236

https://www.interactivebrokers.com/en/software/api/api.htm

timeseries
Request Interactive Brokers aggregated intraday data

Syntax
d = timeseries(ib,ibContract,startdate,enddate,barsize)
d = timeseries(ib,ibContract,startdate,enddate,barsize,ticktype)
d = timeseries(ib,ibContract,startdate,enddate,barsize,ticktype,
tradehours)
d = timeseries(ib,ibContract,startdate,enddate,barsize,ticktype,
tradehours,eventhandler)

Description
d = timeseries(ib,ibContract,startdate,enddate,barsize) requests
Interactive Brokers aggregated intraday data using the IB Trader Workstation connection
ib and IB Trader Workstation IContract object ibContract to signify the instrument.
Request data between startdate and enddate using the tick aggregation interval
barsize for default tick type 'TRADES'.

d = timeseries(ib,ibContract,startdate,enddate,barsize,ticktype)
requests Interactive Brokers aggregated intraday data for a specific type of market data
tick ticktype.

d = timeseries(ib,ibContract,startdate,enddate,barsize,ticktype,
tradehours) requests Interactive Brokers aggregated intraday data using the flag
tradehours to include all data or only data within regular trading hours.

d = timeseries(ib,ibContract,startdate,enddate,barsize,ticktype,
tradehours,eventhandler) requests Interactive Brokers aggregated intraday data
using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

 timeseries

6-237

Request Interactive Brokers Intraday Data Aggregated Every 5 Minutes with
TRADES Default Tick Type

To request intraday data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Real-Time Data” on page 4-36. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request intraday data aggregated every 5 minutes using ib and ibContract.

startdate = floor(now);
enddate = now;
barsize = '5 mins';

d = timeseries(ib,ibContract,startdate,enddate,barsize)

d =

 735329.40 6.91 6.91 6.85 6.85 158.00 13.00 6.87 0
 735329.40 6.85 6.87 6.85 6.87 29.00 24.00 6.86 0
 735329.40 6.87 6.89 6.87 6.87 13.00 13.00 6.88 0
...

d returns the aggregated 5-minute data with default tick type 'TRADES'.

Each row in matrix d represents a 5-minute interval.

The columns in matrix d are:

• Numeric representation of a date
• Open price
• High price
• Low price
• Close price
• Volume
• Bar count
• Weighted average price
• Flag indicating if there are gaps in the bar

Display the open price for the most recent bar in matrix d.

d(1,2)

6 Functions — Alphabetical List

6-238

https://www.interactivebrokers.com/en/software/api/api.htm

ans =
 6.91

Close the IB Trader Workstation connection.

 close(ib)

Request Interactive Brokers Intraday Data Aggregated Every 10 Minutes with a
BID Tick Type

To request intraday data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Real-Time Data” on page 4-36. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request intraday data aggregated every 10 minutes using ib, ibContract, and 'BID'
tick type.

startdate = floor(now);
enddate = now;
barsize = '10 mins';
ticktype = 'BID';

d = timeseries(ib,ibContract,startdate,enddate,barsize,ticktype)

d =

 735329.17 6.38 6.38 6.38 6.38 -1.00 -1.00 -1.00 0
 735329.17 6.38 6.38 6.38 6.38 -1.00 -1.00 -1.00 0
 735329.18 6.38 6.38 6.38 6.38 -1.00 -1.00 -1.00 0
...

d returns the aggregated 10-minute data for 'BID' tick type.

Each row in matrix d represents a 10-minute interval.

The columns in matrix d are:

• Numeric representation of a date
• Open price
• High price

 timeseries

6-239

https://www.interactivebrokers.com/en/software/api/api.htm

• Low price
• Close price
• Volume
• Bar count
• Weighted average price
• Flag indicating if there are gaps in the bar

Display the high price for the most recent bar in matrix d.

d(1,3)

ans =
 6.38

Close the IB Trader Workstation connection.

 close(ib)

Request Interactive Brokers Intraday Data Within Regular Trading Hours

To request intraday data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Real-Time Data” on page 4-36. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request intraday data using ib, ibContract, and these arguments:

• Start date is this morning.
• End date is the current moment.
• Aggregated every 10 minutes.
• Tick type is 'BID'.
• Within regular trading hours.

startdate = floor(now);
enddate = now;
barsize = '10 mins';
ticktype = 'BID';

6 Functions — Alphabetical List

6-240

https://www.interactivebrokers.com/en/software/api/api.htm

tradehours = true;

d = timeseries(ib,ibContract,startdate,enddate,barsize,ticktype,...
 tradehours)

d =

 Columns 1 through 5

 735852.40 580.70 582.12 580.12 580.27
 735852.40 580.27 580.75 579.70 579.80
 735852.40 579.80 579.88 578.33 579.44
 ...

 Columns 6 through 9

 -1.00 -1.00 -1.00 0
 -1.00 -1.00 -1.00 0
 -1.00 -1.00 -1.00 0
 ...

d returns the aggregated 10-minute data for 'BID' tick type.

Each row in matrix d represents a 10-minute interval.

The columns in matrix d are:

• Numeric representation of a date
• Open price
• High price
• Low price
• Close price
• Volume
• Bar count
• Weighted average price
• Flag indicating if there are gaps in the bar

Display the high price for the most recent bar in matrix d.

d(1,3)

ans =
 582.12

Close the IB Trader Workstation connection.

 timeseries

6-241

 close(ib)

Request Interactive Brokers Intraday Data Using an Event Handler

To request intraday data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Real-Time Data” on page 4-36. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request intraday data using ib, ibContract, and these arguments:

• Start date is this morning.
• End date is the current moment.
• Aggregated every 10 minutes.
• Tick type is 'BID'.
• Within regular trading hours.
• Sample event handler function ibExampleEventHandler.

Use ibExampleEventHandler or write a custom event handler function.

startdate = floor(now);
enddate = now;
barsize = '10 mins';
ticktype = 'BID';
tradehours = true;
eventhandler = 'ibExampleEventHandler';

d = timeseries(ib,ibContract,startdate,enddate,barsize,ticktype,...
 tradehours,eventhandler)

d =

 4853.00

 Columns 1 through 3

 [1x1 COM.TWS_TwsCtrl_1] [22.00] [4853.00]

 Columns 4 through 7

 '20140909 15:55:00' [580.20] [581.40] [580.09]

 Columns 8 through 13

6 Functions — Alphabetical List

6-242

https://www.interactivebrokers.com/en/software/api/api.htm

 [581.01] [-1.00] [-1.00] [-1.00] [0] [1x1 struct]

 Column 14

 'historicalData'
...

d is the request identifier.

After d, ibExampleEventHandler streams intraday data to the Command Window. The
columns are:

• Interactive Brokers ActiveX object
• Event identifier
• Request identifier
• Date
• Open price
• High price
• Low price
• Close price
• Volume
• Bar count
• Weighted average price
• Flag indicating if there are gaps in the bar
• Structure that repeats the contents of the columns
• Event type

Close the IB Trader Workstation connection.

 close(ib)

Input Arguments
ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

 timeseries

6-243

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract object.
This object is the instrument or security used in the order transaction. Create this object
by calling the Interactive Brokers API function createContract. For details about
createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

startdate — Start date
character vector | string scalar | numeric scalar

Start date, specified as a character vector, string scalar, or numeric scalar.
Data Types: double | char | string

enddate — End date
character vector | string scalar | numeric scalar

End date, specified as a character vector, string scalar, or numeric scalar.
Data Types: double | char | string

barsize — Tick aggregation interval
'10 secs' | '15 secs' | '30 secs' | '1 min' | '2 mins' | '3 mins' | ...

Tick aggregation interval, specified as one of the following values predetermined by the
Interactive Brokers API that denotes the size of aggregated bars for collecting data.

• '10 secs'
• '15 secs'
• '30 secs'
• '1 min'
• '2 mins'
• '3 mins'
• '5 mins'
• '10 mins'
• '15 mins'
• '20 mins'

6 Functions — Alphabetical List

6-244

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

• '30 mins'
• '1 hour'
• '2 hours'
• '3 hours'
• '4 hours'
• '8 hours'

ticktype — Types of market data ticks
'TRADES' (default) | 'MIDPOINT' | 'BID' | 'ASK' | 'BID_ASK' |
'HISTORICAL_VOLATILITY' | 'OPTION_IMPLIED_VOLATILITY'

Types of market data ticks, specified as one of the preceding values predetermined by the
Interactive Brokers API that denote tick values to collect.

tradehours — Trading hours
false (default) | true

Trading hours, specified as the logical true or false. When this flag is set to true, this
function returns data only within regular trading hours. Otherwise, this function returns
all data.
Data Types: logical

eventhandler — Event handler
function handle | character vector | string scalar

Event handler, specified as a function handle, character vector, or string scalar to identify
an event handler function that processes the returned data. Use the sample event handler
or write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-28.
Example: @eventhandler
Data Types: function_handle | char | string

Output Arguments
d — Interactive Brokers aggregated intraday data
matrix | double

 timeseries

6-245

Interactive Brokers aggregated intraday data, returned as a matrix with these columns:

• Numeric representation of a date
• Open price
• High price
• Low price
• Close price
• Volume
• Bar count
• Weighted average price
• Flag indicating if there are gaps in the bar

When using an event handler function, d is a double denoting the request identifier.

Tips
If the variable ibBuiltInErrMsg appears in the MATLAB workspace, check the status of
the connection and function execution by displaying the contents of this variable.
ibBuiltInErrMsg contains messages related to:

• Connection
• Information resulting from executing functions
• Errors

See Also
close | createOrder | getdata | history | ibtws | realtime

Topics
“Request Interactive Brokers Real-Time Data” on page 4-36
“Workflow for Interactive Brokers” on page 2-6
“Writing and Running Custom Event Handler Functions with Interactive Brokers” on page
1-28

6 Functions — Alphabetical List

6-246

External Websites
Interactive Brokers API Reference Guide

Introduced in R2013b

 timeseries

6-247

https://www.interactivebrokers.com/en/software/api/api.htm

accounts
Retrieve Interactive Brokers account information

Syntax
d = accounts(ib,acctno)
d = accounts(ib,acctno,eventhandler)

Description
d = accounts(ib,acctno) retrieves account information using Interactive Brokers
connection ib and account number acctno.

d = accounts(ib,acctno,eventhandler) retrieves account information using an
event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

Retrieve Account Information

Create the IB Trader Workstation℠ connection ib on the local machine using port
number 7496.

ib = ibtws('',7496);

Retrieve account information for account number acctno using ib.

acctno = 'AB123456';

d = accounts(ib,acctno);

d is a structure with fields containing the account information.

Display the account code.

6 Functions — Alphabetical List

6-248

d.AccountCode

ans =

 'DU15111'

For details about this data and the other fields, see the Interactive Brokers® API
Reference Guide.

Close the IB Trader Workstation℠ connection.

close(ib)

Retrieve Account Information Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

 ib = ibtws('',7496);

Retrieve account information for account number acctno using ib. Use the sample event
handler ibExampleEventHandler to display the IB Trader Workstation account
information in the Command Window. Use ibExampleEventHandler or write a custom
event handler function.

acctno = 'AB123456';

d = accounts(ib,acctno,@ibExampleEventHandler)

d =

 []

 Columns 1 through 7

 [1x1 COM.TWS_TwsCtrl_1] [7] 'AccountCode' 'AB123456' '' 'AB123456' [1x1 struct]

 Column 8

 'updateAccountValue'
 ...

d is an empty double.

 accounts

6-249

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

The sample event handler ibExampleEventHandler displays the account information in
the Command Window. The columns are:

• Interactive Brokers ActiveX object
• Event identifier
• Account code
• Event key
• Currency
• Account name
• Structure that repeats the contents of the columns
• Request type

For details about this data, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.

close(ib)

Input Arguments
ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

acctno — Account number
character vector | string scalar

Account number, specified as a character vector or string scalar that identifies the
Interactive Brokers account number.
Data Types: char | string

eventhandler — Event handler
function handle | character vector | string scalar

Event handler, specified as a function handle, character vector, or string scalar to identify
an event handler function that processes the returned data. Use the sample event handler

6 Functions — Alphabetical List

6-250

https://www.interactivebrokers.com/en/software/api/api.htm

or write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-28.
Example: @eventhandler
Data Types: function_handle | char | string

Output Arguments
d — Account information
structure | double

Account information, returned as a structure containing fields with the Interactive
Brokers account information. When using an event handler function, d is an empty
double.

Tips
If the variable ibBuiltInErrMsg appears in the MATLAB workspace, check the status of
the connection and function execution by displaying the contents of this variable.
ibBuiltInErrMsg contains messages related to:

• Connection
• Information resulting from executing functions
• Errors

See Also
close | createOrder | history | ibtws | timeseries

Topics
“Create and Manage an Interactive Brokers Order” on page 4-27
“Workflow for Interactive Brokers” on page 2-6
“Writing and Running Custom Event Handler Functions with Interactive Brokers” on page
1-28

 accounts

6-251

External Websites
Interactive Brokers API Reference Guide

Introduced in R2015a

6 Functions — Alphabetical List

6-252

https://www.interactivebrokers.com/en/software/api/api.htm

contractdetails
Request Interactive Brokers contract details

Syntax
[d,reqid] = contractdetails(ib,ibContract)
[d,reqid] = contractdetails(ib,ibContract,eventhandler)

Description
[d,reqid] = contractdetails(ib,ibContract) requests Interactive Brokers
contract details using IB Trader Workstation connection ib and IB Trader Workstation
IContract object ibContract.

[d,reqid] = contractdetails(ib,ibContract,eventhandler) requests
Interactive Brokers contract details using an event handler function eventhandler. Use
the sample event handler ibExampleEventHandler or write a custom event handler
function.

Examples

Request Interactive Brokers® Contract Details

Create the IB Trader Workstation℠ connection ib on the local machine using port
number 7496.

ib = ibtws('',7496);

Create the IB Trader Workstation℠ IContract object ibContract. This object
describes a security with these property values:

• Google® symbol
• Stock security type

 contractdetails

6-253

• Aggregate exchange
• Primary exchange
• USD currency

IEX is a sample primary exchange name. Substitute your primary exchange name for
ibContract.primaryExchange.

ibContract = ib.Handle.createContract;
ibContract.symbol = 'GOOG';
ibContract.secType = 'STK';
ibContract.exchange = 'SMART';
ibContract.primaryExchange = 'IEX';
ibContract.currency = 'USD';

For details about the IContract object, see the Interactive Brokers® API Reference
Guide.

Request contract details data using ib and ibContract.

[d,reqid] = contractdetails(ib,ibContract);

d is a structure containing the contract details data. For details about this data, see the
Interactive Brokers® API Reference Guide.

reqid is a number that Interactive Brokers® uses to track this contract details data
request.

Display the market name from the contract details data.

d.marketName

ans =

 'NMS'

Display the request identifier.

reqid

reqid =

6 Functions — Alphabetical List

6-254

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

 8147

Close the IB Trader Workstation℠ connection.

close(ib)

Request Interactive Brokers Contract Details Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

 ib = ibtws('',7496);

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

• Google symbol
• Stock security type
• Aggregate exchange
• Primary exchange
• USD currency

EX is a sample primary exchange name. Substitute your primary exchange name in
ibContract.primaryExchange.

ibContract = ib.Handle.createContract;
ibContract.symbol = 'GOOG';
ibContract.secType = 'STK';
ibContract.exchange = 'SMART';
ibContract.primaryExchange = 'EX';
ibContract.currency = 'USD';

For details about the IContract object, see Interactive Brokers API Reference Guide.

Request contract details data using ib, ibContract, and sample event handler function
ibExampleEventHandler. Use ibExampleEventHandler or write a custom event
handler function.

[d,reqid] = contractdetails(ib,ibContract,@ibExampleEventHandler)

 contractdetails

6-255

https://www.interactivebrokers.com/en/software/api/api.htm

d =

 1269

reqid =

 1269

 Columns 1 through 4

 [1x1 COM.TWS_TwsCtrl_1] [100] [1269] [1x1 Interface.Tws_ActiveX_Control_module.IContractDetails]

 Columns 5 through 6

 [1x1 struct] 'contractDetailsEx'

d and reqid return a number that Interactive Brokers uses to track this contract details
data request.

After these variables, ibExampleEventHandler returns contract details data to the
Command Window. The columns are:

• Interactive Brokers ActiveX object
• Event identifier
• Request identifier
• Contract details ActiveX object
• Structure that repeats the contents of the columns
• Request type

For details about this data, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.

close(ib)

Input Arguments
ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object

6 Functions — Alphabetical List

6-256

https://www.interactivebrokers.com/en/software/api/api.htm

IB Trader Workstation contract, specified as an IB Trader Workstation IContract object.
This object is the instrument or security used in the order transaction. Create this object
by calling the Interactive Brokers API function createContract. For details about
createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

eventhandler — Event handler
function handle | character vector | string scalar

Event handler, specified as a function handle, character vector, or string scalar to identify
an event handler function that processes the returned data. Use the sample event handler
or write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-28.
Example: @eventhandler
Data Types: function_handle | char | string

Output Arguments
d — Interactive Brokers contract details data
structure | numeric scalar

Interactive Brokers contract details data, returned as a structure. When using an event
handler function, d is a numeric scalar that denotes the contract detail data request
identifier.

reqid — Contract detail data request identifier
numeric scalar

Contract detail data request identifier, returned as a numeric scalar. Interactive Brokers
uses this number to match responses to the correct data request when multiple data
requests are present.

Tips
If the variable ibBuiltInErrMsg appears in the MATLAB workspace, check the status of
the connection and function execution by displaying the contents of this variable.
ibBuiltInErrMsg contains messages related to:

 contractdetails

6-257

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

• Connection
• Information resulting from executing functions
• Errors

See Also
close | createOrder | history | ibtws | timeseries

Topics
“Create and Manage an Interactive Brokers Order” on page 4-27
“Workflow for Interactive Brokers” on page 2-6
“Writing and Running Custom Event Handler Functions with Interactive Brokers” on page
1-28

External Websites
Interactive Brokers API Reference Guide

Introduced in R2015a

6 Functions — Alphabetical List

6-258

https://www.interactivebrokers.com/en/software/api/api.htm

executions
Request Interactive Brokers execution data

Syntax
d = executions(ib,filter)
d = executions(ib,filter,eventhandler)

Description
d = executions(ib,filter) requests Interactive Brokers execution data using the IB
Trader Workstation connection ib and the Interactive Brokers execution filter filter.

d = executions(ib,filter,eventhandler) requests Interactive Brokers execution
data using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

Request Execution Filter Data

Create the IB Trader Workstation℠ connection ib on the local machine using port
number 7496.

ib = ibtws('',7496);

Create the IB Trader Workstation℠ execution filter IExecutionFilter object filter.
This object specifies these property values:

• Buy side
• Stock security type
• Aggregate exchange

 executions

6-259

• Google® symbol

filter = ib.Handle.createExecutionFilter;
filter.side = 'BUY';
filter.secType = 'STK';
filter.exchange = 'SMART';
filter.symbol = 'GOOG';

For details about the IExecutionFilter object, see the Interactive Brokers® API
Reference Guide.

Request IB Trader Workstation℠ execution filter data using ib and filter.

d = executions(ib,filter)

d =

 struct with fields:

 enddetails: [1×1 struct]

d is a structure containing the execution filter data in the structure enddetails.

Display the execution filter data.

d.enddetails

ans =

 struct with fields:

 Type: 'execDetailsEnd'
 Source: [1×1 COM.TWS_TwsCtrl]
 EventID: 38
 reqId: 1

The structure enddetails contains these fields:

• Type -- Data request type
• Source -- Interactive Brokers® ActiveX® object

6 Functions — Alphabetical List

6-260

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

• EventID -- Event identifier
• reqId -- Execution filter data request identifier

Close the IB Trader Workstation℠ connection.

close(ib)

Request Execution Filter Data Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

 ib = ibtws('',7496);

Create the IB Trader Workstation execution filter IExecutionFilter object filter.
Here, this object specifies these property values:

• Buy side
• Stock security type
• Aggregate exchange
• Google symbol

filter = ib.Handle.createExecutionFilter;
filter.side = 'BUY';
filter.secType = 'STK';
filter.exchange = 'SMART';
filter.symbol = 'GOOG';

For details about the IExecutionFilter object, see Interactive Brokers API Reference
Guide.

Request IB Trader Workstation execution filter data using ib and filter. Use the
sample event handler ibExampleEventHandler to display the IB Trader Workstation
execution filter data in the Command Window. Use ibExampleEventHandler or write a
custom event handler function.

d = executions(ib,filter,@ibExampleEventHandler)

d =

 []

 executions

6-261

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

 [1x1 COM.TWS_TwsCtrl_1] [38] [1] [1x1 struct] 'execDetailsEnd'

d is an empty double.

ibExampleEventHandler displays the data in the Command Window. The columns are:

• Interactive Brokers ActiveX object
• Event identifier
• Execution filter data request identifier
• Structure that repeats the contents of the columns
• Data request type

For details, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.

close(ib)

Input Arguments
ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

filter — IB Trader Workstation execution filter
IExecutionFilter object

IB Trader Workstation execution filter, specified as a IExecutionFilter object. For
details about this object, see Interactive Brokers API Reference Guide.
Data Types: struct

eventhandler — Event handler
function handle | character vector | string scalar

Event handler, specified as a function handle, character vector, or string scalar to identify
an event handler function that processes the returned data. Use the sample event handler

6 Functions — Alphabetical List

6-262

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

or write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-28.
Example: @eventhandler
Data Types: function_handle | char | string

Output Arguments
d — IB Trader Workstation execution filter data
structure | double

IB Trader Workstation execution filter data, returned as a structure. When using an event
handler function, d is an empty double.

Tips
If the variable ibBuiltInErrMsg appears in the MATLAB workspace, check the status of
the connection and function execution by displaying the contents of this variable.
ibBuiltInErrMsg contains messages related to:

• Connection
• Information resulting from executing functions
• Errors

See Also
close | createOrder | getdata | history | ibtws | timeseries

Topics
“Create and Manage an Interactive Brokers Order” on page 4-27
“Workflow for Interactive Brokers” on page 2-6
“Writing and Running Custom Event Handler Functions with Interactive Brokers” on page
1-28

External Websites
Interactive Brokers API Reference Guide

 executions

6-263

https://www.interactivebrokers.com/en/software/api/api.htm

Introduced in R2015a

6 Functions — Alphabetical List

6-264

marketdepth
Request Interactive Brokers market depth data

Syntax
d = marketdepth(ib,ibContract,depth)
d = marketdepth(ib,ibContract,depth,eventhandler)

Description
d = marketdepth(ib,ibContract,depth) requests Interactive Brokers market
depth data using the IB Trader Workstation connection ib, IB Trader Workstation
IContract object ibContract, and price level depth.

d = marketdepth(ib,ibContract,depth,eventhandler) requests Interactive
Brokers market depth data using an event handler function eventhandler. Use the
sample event handler ibExampleEventHandler or write a custom event handler
function.

Examples

Request Market Depth Data

To request Interactive Brokers market depth data, set up the IB Trader Workstation
connection ib using ibtws. Create an IB Trader Workstation IContract object
ibContract as shown in “Request Interactive Brokers Real-Time Data” on page 4-36. An
IContract object is an Interactive Brokers object for containing the data about a
security to process transactions. For details about creating this object, see Interactive
Brokers API Reference Guide.

Request market depth data using ib and ibContract. Specify five price levels for the
bid and offer sides for depth. This code assumes ibContract is an E-mini S&P 500
futures contract with an expiry of December 2014 that trades on the CME Globex
exchange.

 marketdepth

6-265

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

depth = 5;

d = marketdepth(ib,ibContract,depth)

d =

 bid: [5x2 double]
 offer: [5x2 double]

d is a structure that contains the fields for bid and offer price levels.

Display the bid prices for five levels of market depth.

d.bid

ans =

 1992.5 495
 1992.25 1479
 1992 1950
 1991.75 1763
 1991.5 2117

The first column contains the bid price and the second column contains the bid size.

Close the IB Trader Workstation connection.

 close(ib)

Request Market Depth Data Using an Event Handler

To request Interactive Brokers market depth data, set up the IB Trader Workstation
connection ib using ibtws. Create an IB Trader Workstation IContract object
ibContract as shown in “Request Interactive Brokers Real-Time Data” on page 4-36. An
IContract object is an Interactive Brokers object for containing the data about a
security to process transactions. For details about creating this object, see Interactive
Brokers API Reference Guide.

Request market depth data using ib and ibContract. Specify five price levels for the
bid and offer sides for depth. This code assumes ibContract is an E-mini S&P 500
futures contract with an expiry of December 2014 that trades on the CME Globex
exchange. Use the sample event handler function ibExampleEventHandler or write a
custom event handler function.

6 Functions — Alphabetical List

6-266

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

depth = 5;

d = marketdepth(ib,ibContract,depth,@ibExampleEventHandler)

d =

 8147

 [1x1 COM.TWS_TwsCtrl_1] [16.00] [8147.00] [0] [0] [1.00] [1988.75] [346.00] [1x1 struct] 'updateMktDepth'
 ...

d is the request identifier.

After d, ibExampleEventHandler streams market depth data to the Command Window.

The columns are:

• Interactive Brokers ActiveX object
• Event identifier
• Request identifier
• Position
• Operation
• Side
• Price
• Size
• Structure that repeats the contents of the columns
• Event type

Close the IB Trader Workstation connection.

 close(ib)

Input Arguments
ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

 marketdepth

6-267

ibContract — IB Trader Workstation contract
IContract object

IB Trader Workstation contract, specified as an IB Trader Workstation IContract object.
This object is the instrument or security used in the order transaction. Create this object
by calling the Interactive Brokers API function createContract. For details about
createContract and the attributes that you can set, see Interactive Brokers API
Reference Guide.

depth — IB Trader Workstation market depth
1 | 2 | 3 | ...

IB Trader Workstation market depth, specified as a scalar from one through 10. This
number denotes the depth of the active book.
Data Types: double

eventhandler — Event handler
function handle | character vector | string scalar

Event handler, specified as a function handle, character vector, or string scalar to identify
an event handler function that processes the returned data. Use the sample event handler
or write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-28.
Example: @eventhandler
Data Types: function_handle | char | string

Output Arguments
d — IB Trader Workstation market depth data
structure | double

IB Trader Workstation market depth data, returned as a structure containing the price
level data for the bid and offer prices. Price level data consists of the price and size. When
using an event handler function, d is a double denoting the request identifier.

6 Functions — Alphabetical List

6-268

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

Tips
If the variable ibBuiltInErrMsg appears in the MATLAB workspace, check the status of
the connection and function execution by displaying the contents of this variable.
ibBuiltInErrMsg contains messages related to:

• Connection
• Information resulting from executing functions
• Errors

See Also
close | createOrder | history | ibtws | realtime | timeseries

Topics
“Create and Manage an Interactive Brokers Order” on page 4-27
“Workflow for Interactive Brokers” on page 2-6
“Writing and Running Custom Event Handler Functions with Interactive Brokers” on page
1-28

External Websites
Interactive Brokers API Reference Guide

Introduced in R2015a

 marketdepth

6-269

https://www.interactivebrokers.com/en/software/api/api.htm

orderid
Obtain next valid order identification number

Syntax
id = orderid(ib)

Description
id = orderid(ib) obtains the next valid order identification number for Interactive
Brokers connection ib.

Examples

Obtain Next Valid Order Identification Number

Create an IB Trader Workstation℠ connection on the local machine using port number
7496.

ib = ibtws('',7496);

Obtain the next valid order identification number using ib.

id = orderid(ib)

id =

 1

id contains the next valid order identification number. To create an order, use this
number in createOrder.

Close the IB Trader Workstation℠ connection.

6 Functions — Alphabetical List

6-270

close(ib)

Input Arguments
ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

Output Arguments
id — Next valid order identification number
numeric scalar

Next valid order identification number, returned as a numeric scalar.

Tips
If the variable ibBuiltInErrMsg appears in the MATLAB workspace, check the status of
the connection and function execution by displaying the contents of this variable.
ibBuiltInErrMsg contains messages related to:

• Connection
• Information resulting from executing functions
• Errors

See Also
close | createOrder | getdata | history | ibtws | timeseries

Topics
“Create and Manage an Interactive Brokers Order” on page 4-27
“Workflow for Interactive Brokers” on page 2-6

 orderid

6-271

External Websites
Interactive Brokers API Reference Guide

Introduced in R2015a

6 Functions — Alphabetical List

6-272

https://www.interactivebrokers.com/en/software/api/api.htm

orders
Request Interactive Brokers open order data

Syntax
o = orders(ib)
o = orders(ib,client)
o = orders(ib,client,eventhandler)

Description
o = orders(ib) requests Interactive Brokers open order data using IB Trader
Workstation connection ib for the current client only.

o = orders(ib,client) requests Interactive Brokers open order data using IB Trader
Workstation connection ib and a client flag. client denotes requesting data from the
current client or all clients.

o = orders(ib,client,eventhandler) requests Interactive Brokers open order
data using an event handler function eventhandler. Use the sample event handler
ibExampleEventHandler or write a custom event handler function.

Examples

Request Open Order Data

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

 ib = ibtws('',7496);

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

 orders

6-273

• Google symbol
• Stock security type
• Aggregate exchange
• Primary exchange
• USD currency

EX is a sample primary exchange name. Substitute your primary exchange name in
ibContract.primaryExchange.

ibContract = ib.Handle.createContract;
ibContract.symbol = 'GOOG';
ibContract.secType = 'STK';
ibContract.exchange = 'SMART';
ibContract.primaryExchange = 'EX';
ibContract.currency = 'USD';

Create the IB Trader Workstation IOrder object ibOrder. Here, this object describes a
limit order to sell two shares with a limit price of $590.

ibOrder = ib.Handle.createOrder;
ibOrder.action = 'SELL';
ibOrder.totalQuantity = 2;
ibOrder.orderType = 'LMT'
ibOrder.lmtPrice = 590;

For details about the IContract and IOrder objects, see Interactive Brokers API
Reference Guide.

Create a unique order identifier id.

id = orderid(ib);

Execute the order using:

• IB Trader Workstation connection ib
• IB Trader Workstation IContract object ibContract
• IB Trader Workstation IOrder object ibOrder
• Unique order identifier id

d = createOrder(ib,ibContract,ibOrder,id);

Retrieve order information o.

6 Functions — Alphabetical List

6-274

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

o = orders(ib)

o =

1x2 struct array with fields:

 Type
 EventID
 orderId
 contract
 order
 orderState

o contains a structure array. The array contains a structure with data for each open order.
The structure fields are:

• Order type
• Event identifier
• Order identifier
• Contract data
• Order data
• Order status

Retrieve the current status of the order.

o.orderState

ans =

 status: 'Submitted'
 initMargin: '1.7976931348623157E308'
 maintMargin: '1.7976931348623157E308'
 ...

orderState is a structure with fields corresponding to the status of the order. The fields
are order status, initial margin, and maintenance margin. For details on these fields and
the additional fields in orderState, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.

close(ib)

 orders

6-275

https://www.interactivebrokers.com/en/software/api/api.htm

Request Open Order Data From All Clients

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

 ib = ibtws('',7496);

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

• Google symbol
• Stock security type
• Aggregate exchange
• Primary exchange
• USD currency

EX is a sample primary exchange name. Substitute your primary exchange name in
ibContract.primaryExchange.

ibContract = ib.Handle.createContract;
ibContract.symbol = 'GOOG';
ibContract.secType = 'STK';
ibContract.exchange = 'SMART';
ibContract.primaryExchange = 'EX';
ibContract.currency = 'USD';

Create the IB Trader Workstation IOrder object ibOrder. Here, this object describes a
limit order to sell two shares with a limit price of $590.

ibOrder = ib.Handle.createOrder;
ibOrder.action = 'SELL';
ibOrder.totalQuantity = 2;
ibOrder.orderType = 'LMT'
ibOrder.lmtPrice = 590;

For details about the IContract and IOrder objects, see Interactive Brokers API
Reference Guide.

Create a unique order identifier id.

id = orderid(ib);

Execute the order using:

6 Functions — Alphabetical List

6-276

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

• IB Trader Workstation connection ib
• IB Trader Workstation IContract object ibContract
• IB Trader Workstation IOrder object ibOrder
• Unique order identifier id

d = createOrder(ib,ibContract,ibOrder,id);

Retrieve order information o from all clients by setting client to false.

o = orders(ib,false)

o =

1x2 struct array with fields:

 Type
 EventID
 orderId
 contract
 order
 orderState

o contains a structure array. The array contains a structure with data for each open order.
The structure fields are:

• Order type
• Event identifier
• Order identifier
• Contract data
• Order data
• Order status

Retrieve the current status of the order.

o.orderState

ans =

 status: 'Submitted'
 initMargin: '1.7976931348623157E308'
 maintMargin: '1.7976931348623157E308'
 ...

 orders

6-277

orderState is a structure with fields corresponding to the status of the order. The fields
are order status, initial margin, and maintenance margin. For details on these fields and
the additional fields in orderState, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.

close(ib)

Request Open Order Data Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

 ib = ibtws('',7496);

Create the IB Trader Workstation IContract object ibContract. Here, this object
describes a security with these property values:

• Google symbol
• Stock security type
• Aggregate exchange
• Primary exchange
• USD currency

EX is a sample primary exchange name. Substitute your primary exchange name in
ibContract.primaryExchange.

ibContract = ib.Handle.createContract;
ibContract.symbol = 'GOOG';
ibContract.secType = 'STK';
ibContract.exchange = 'SMART';
ibContract.primaryExchange = 'EX';
ibContract.currency = 'USD';

Create the IB Trader Workstation IOrder object ibOrder. Here, this object describes a
limit order to sell two shares with a limit price of $590.

ibOrder = ib.Handle.createOrder;
ibOrder.action = 'SELL';
ibOrder.totalQuantity = 2;

6 Functions — Alphabetical List

6-278

https://www.interactivebrokers.com/en/software/api/api.htm

ibOrder.orderType = 'LMT'
ibOrder.lmtPrice = 590;

For details about the IContract and IOrder objects, see Interactive Brokers API
Reference Guide.

Create a unique order identifier id.

id = orderid(ib);

Execute the order using:

• IB Trader Workstation connection ib
• IB Trader Workstation IContract object ibContract
• IB Trader Workstation IOrder object ibOrder
• Unique order identifier id

d = createOrder(ib,ibContract,ibOrder,id);

Retrieve order information from all clients by setting client to false and using the
sample event handler function ibExampleEventHandler. Use
ibExampleEventHandler or write a custom event handler function.

o = orders(ib,false,@ibExampleEventHandler)

o =

 []

 Columns 1 through 4

 [1x1 COM.TWS_TwsCtrl_1] [101] [56947638] [1x1 Interface.Tws_ActiveX_Control_module.IContract]

 Columns 5 through 6

 [1x1 Interface.Tws_ActiveX_Control_module.IOrder] [1x1 Interface.Tws_ActiveX_Control_module.IOrderState]

 Columns 7 through 8

 [1x1 struct] 'openOrderEx'

o contains an empty double because the event handler ibExampleEventHandler
processes the output data.

ibExampleEventHandler displays the output data in the Command Window. Here, IB
Trader Workstation returns:

 orders

6-279

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

• Interactive Brokers ActiveX object
• Event identifier
• Unique order identifier
• IB Trader Workstation IContract object
• IB Trader Workstation IOrder object
• IB Trader Workstation IOrderState object
• Structure that repeats the contents of the columns
• Request type

For details about this data, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.

close(ib)

Input Arguments
ib — IB Trader Workstation connection
connection object

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

client — Client flag
true (default) | false

Client flag, specified as a logical. true denotes returning data from the current client
only. false denotes returning data from all clients.
Data Types: logical

eventhandler — Event handler
function handle | character vector | string scalar

Event handler, specified as a function handle, character vector, or string scalar to identify
an event handler function that processes the returned data. Use the sample event handler
or write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-28.

6 Functions — Alphabetical List

6-280

https://www.interactivebrokers.com/en/software/api/api.htm

Example: @eventhandler
Data Types: function_handle | char | string

Output Arguments
o — Interactive Brokers open order data
structure | double

Interactive Brokers open order data, returned as a structure or an empty double. The
structure contains these fields:

• Order type
• Event identifier
• Order identifier
• Contract data
• Order data
• Order status

When using an event handler function, o is an empty double.

Tips
• ibBuiltInErrMsg appears in the MATLAB workspace. Check the status of

connection and function execution by displaying the contents of this variable.
ibBuiltInErrMsg contains messages related to:

• Connection
• Information resulting from executing functions
• Errors

• Executing orders multiple times using the same IB Trader Workstation connection
can cause this kind of warning message: Warning: Cannot unregister ‘openOrderEx’.
Invalid event name/handler combination. To fix this warning, close the IB Trader
Workstation connection and create a new connection using ibtws.

 orders

6-281

See Also
close | createOrder | executions | getdata | history | ibtws | orderid |
timeseries

Topics
“Create and Manage an Interactive Brokers Order” on page 4-27
“Workflow for Interactive Brokers” on page 2-6
“Writing and Running Custom Event Handler Functions with Interactive Brokers” on page
1-28

External Websites
Interactive Brokers API Reference Guide

Introduced in R2015a

6 Functions — Alphabetical List

6-282

https://www.interactivebrokers.com/en/software/api/api.htm

portfolio
Retrieve current Interactive Brokers portfolio data

Syntax
p = portfolio(ib)
p = portfolio(ib,acctno)
p = portfolio(ib,acctno,eventhandler)

Description
p = portfolio(ib) retrieves current Interactive Brokers portfolio data for the active
account number using the IB Trader Workstation connection ib.

p = portfolio(ib,acctno) retrieves current Interactive Brokers portfolio data using
the account number acctno.

p = portfolio(ib,acctno,eventhandler) retrieves current Interactive Brokers
portfolio data using an event handler function eventhandler. Use the sample event
handler ibExampleEventHandler or write a custom event handler function.

Examples

Retrieve Current Portfolio Data

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

 ib = ibtws('',7496);

Retrieve current Interactive Brokers portfolio data using ib.

p = portfolio(ib)

 portfolio

6-283

p =

 Type: {5x1 cell}
 Source: {5x1 cell}
 EventID: {5x1 cell}
 contract: {5x1 cell}
 position: {5x1 cell}
 marketPrice: {5x1 cell}
 marketValue: {5x1 cell}
 averageCost: {5x1 cell}
 unrealizedPNL: {5x1 cell}
 realizedPNL: {5x1 cell}
 accountName: {5x1 cell}

p is a structure that contains these fields:

• Event type
• Interactive Brokers ActiveX object
• Event identifier
• Contract details
• Number of shares for each contract
• Price of the shares for each contract
• Number of shares multiplied by the price of the shares for each contract
• Average price when the shares are purchased for each contract
• Unrealized profit and loss for each contract
• Actual profit and loss for each contract
• Account number

5x1 means there are five contracts in this portfolio. For details about this data, see
Interactive Brokers API Reference Guide.

Display the market price for each contract in the portfolio.

p.marketPrice

ans =

 [8.60]
 [582.95]
 [591.79]

6 Functions — Alphabetical List

6-284

https://www.interactivebrokers.com/en/software/api/api.htm

 [188.44]
 [42.24]

Close the IB Trader Workstation connection.

close(ib)

Retrieve Current Portfolio Data Using the Account Number

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

 ib = ibtws('',7496);

Retrieve current Interactive Brokers portfolio data using ib and account number acctno.

acctno = 'DU111111';

p = portfolio(ib,acctno)

p =

 Type: {5x1 cell}
 Source: {5x1 cell}
 EventID: {5x1 cell}
 contract: {5x1 cell}
 position: {5x1 cell}
 marketPrice: {5x1 cell}
 marketValue: {5x1 cell}
 averageCost: {5x1 cell}
 unrealizedPNL: {5x1 cell}
 realizedPNL: {5x1 cell}
 accountName: {5x1 cell}

p is a structure that contains these fields:

• Event type
• Interactive Brokers ActiveX object
• Event identifier
• Contract details
• Number of shares for each contract

 portfolio

6-285

• Price of the shares for each contract
• Number of shares multiplied by the price of the shares for each contract
• Average price when the shares are purchased for each contract
• Unrealized profit and loss for each contract
• Actual profit and loss for each contract
• Account number

5x1 means there are five contracts in this portfolio. For details about this data, see
Interactive Brokers API Reference Guide.

Display the market price for each contract in the portfolio.

p.marketPrice

ans =

 [8.60]
 [582.95]
 [591.79]
 [188.44]
 [42.24]

Close the IB Trader Workstation connection.

close(ib)

Retrieve Current Portfolio Data Using an Event Handler

Create the IB Trader Workstation connection ib on the local machine using port number
7496.

 ib = ibtws('',7496);

Retrieve current Interactive Brokers portfolio data using ib, account number acctno,
and sample event handler ibExampleEventHandler. Use ibExampleEventHandler or
write a custom event handler function.

acctno = 'DU111111';

p = portfolio(ib,acctno,@ibExampleEventHandler)

6 Functions — Alphabetical List

6-286

https://www.interactivebrokers.com/en/software/api/api.htm

p =

 []

 Columns 1 through 5

 [1x1 COM.TWS_TwsCtrl_1] [103] [1x1 Interface.Tws_ActiveX_Control_module.IContract] [60] [8.58]

 Columns 6 through 12

 [515.10] [8.22] [21.68] [0] 'DU111111' [1x1 struct] 'updatePortfolioEx'
 ...

p is an empty double because ibExampleEventHandler displays the current Interactive
Brokers portfolio data for each security in the Command Window.

The columns are:

• Interactive Brokers ActiveX object
• Event identifier
• IB Trader Workstation IContract object
• Number of shares
• Price of the shares
• Number of shares multiplied by the price of the shares
• Average price when the shares are purchased
• Unrealized profit and loss
• Actual profit and loss
• Account number
• Structure that repeats the contents of the columns
• Event type

For details about this data, see Interactive Brokers API Reference Guide.

Close the IB Trader Workstation connection.

close(ib)

Input Arguments
ib — IB Trader Workstation connection
connection object

 portfolio

6-287

https://www.interactivebrokers.com/en/software/api/api.htm

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

acctno — Account number
character vector | string scalar

Account number, specified as a character vector or string scalar that identifies the
Interactive Brokers account number.
Data Types: char | string

eventhandler — Event handler
function handle | character vector | string scalar

Event handler, specified as a function handle, character vector, or string scalar to identify
an event handler function that processes the returned data. Use the sample event handler
or write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-28.
Example: @eventhandler
Data Types: function_handle | char | string

Output Arguments
p — Interactive Brokers portfolio data
structure | double

Interactive Brokers portfolio data, returned as a structure. The structure contains these
fields. When using an event handler function, p is an empty double.

Field Description
Type Interactive Brokers event type name
Source Interactive Brokers ActiveX object
EventID Number that identifies the event type
contract Structure that contains details for each

contract in the portfolio
position Number of shares for each contract in the

portfolio

6 Functions — Alphabetical List

6-288

Field Description
marketPrice Price of the shares for each contract in the

portfolio
marketValue Number of shares multiplied by the price of

the shares for each contract in the portfolio
averageCost Average price when the shares are

purchased for each contract in the portfolio
unrealizedPNL Unrealized profit and loss for each contract

in the portfolio
realizedPNL Actual profit and loss for each contract in

the portfolio
accountName Account number

Tips
If the variable ibBuiltInErrMsg appears in the MATLAB workspace, check the status of
the connection and function execution by displaying the contents of this variable.
ibBuiltInErrMsg contains messages related to:

• Connection
• Information resulting from executing functions
• Errors

See Also
close | createOrder | executions | getdata | history | ibtws | marketdepth |
timeseries

Topics
“Create and Manage an Interactive Brokers Order” on page 4-27
“Workflow for Interactive Brokers” on page 2-6
“Writing and Running Custom Event Handler Functions with Interactive Brokers” on page
1-28

 portfolio

6-289

External Websites
Interactive Brokers API Reference Guide

Introduced in R2015a

6 Functions — Alphabetical List

6-290

https://www.interactivebrokers.com/en/software/api/api.htm

realtime
Request Interactive Brokers real-time data

Syntax
tickerid = realtime(ib,ibContract,f)
tickerid = realtime(ib,ibContract,f,eventhandler)

Description
tickerid = realtime(ib,ibContract,f) requests Interactive Brokers real-time
data using IB Trader Workstation connection ib, IB Trader Workstation IContract
object ibContract, and Interactive Brokers fields f.

tickerid = realtime(ib,ibContract,f,eventhandler) requests Interactive
Brokers real-time data using an event handler function eventhandler. Use the sample
event handler ibExampleEventHandler or write a custom event handler function.

Examples

Request Real-Time Data

To request real-time data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Real-Time Data” on page 4-36. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request default Interactive Brokers real-time data by setting the Interactive Brokers field
f to an empty character vector .

Request real-time data using ib, ibContract, and f.

 realtime

6-291

https://www.interactivebrokers.com/en/software/api/api.htm

f = '';

tickerid = realtime(ib,ibContract,f)

tickerid =

 1

tickerid returns a number for tracking the real-time data request.

The realtime function returns real-time data in the MATLAB workspace variable
ibBuiltInRealtimeData.

Display this real-time data.

ibBuiltInRealtimeData

ibBuiltInRealtimeData =

 id: 1
 BID_PRICE: 584.65
 BID_SIZE: 1
 ASK_PRICE: 585.80
 ASK_SIZE: 1
 LAST_PRICE: 585
 LAST_SIZE: 1
 VOLUME: 11611

The structure ibBuiltInRealtimeData contains these fields:

• Real-time request identifier
• Bid price
• Bid size
• Ask price
• Ask size
• Last price
• Last size
• Volume

The id field is a number that tracks the real-time data request for IB Trader Workstation
IContract object ibContract. When you create multiple contracts, each real-time data
display has a different value for the id field that corresponds to a specific contract.

6 Functions — Alphabetical List

6-292

Cancel the real-time market data request using tickerid.

ib.Handle.cancelMktData(tickerid)

Remove event handler assignments for each real-time event.
evtListeners = ib.Handle.eventlisteners;
eventTypes = {'tickSize','tickPrice','tickSnapshotEnd', ...
 'tickOptionComputation','tickGeneric','tickString', ...
 'tickEFP','marketDataType'};
for j = 1:length(eventTypes)
 i = strcmp(evtListeners(:,1),eventTypes{j});
 ib.Handle.unregisterevent([{evtListeners{i,1}}' {evtListeners{i,2}}']);
end

Close the IB Trader Workstation connection.

close(ib)

Request Real-Time Data Using an Event Handler

To request real-time data, set up the IB Trader Workstation connection ib using ibtws.
Create an IB Trader Workstation IContract object ibContract as shown in “Request
Interactive Brokers Real-Time Data” on page 4-36. An IContract object is an Interactive
Brokers object for containing the data about a security to process transactions. For
details about creating this object, see Interactive Brokers API Reference Guide.

Request default Interactive Brokers real-time data by setting the Interactive Brokers field
f to an empty character vector .

f = '';

Request real-time data using ib, ibContract, and f. Use the sample event handler
ibExampleEventHandler to display the real-time data in the Command Window.

tickerid = realtime(ib,ibContract,f,...
 @ibExampleEventHandler)

tickerid =

 1

 [1x1 COM.TWS_TwsCtrl_1] [1] [1] [1] [585.50] [1] [1x1 struct] 'tickPrice'

 [1x1 COM.TWS_TwsCtrl_1] [2] [1] [0] [1] [1x1 struct] 'tickSize'

...

 realtime

6-293

https://www.interactivebrokers.com/en/software/api/api.htm

tickerid returns a number for tracking the real-time data request.

After the tickerid, ibExampleEventHandler streams real-time data to the Command
Window. Each line is a type of tick. Here, there is a price tick and size tick.

For a price tick, the IB Trader Workstation returns:

• Interactive Brokers ActiveX object
• Event identifier
• Request identifier
• Tick type
• Price
• Automatic execution flag
• Structure that repeats the contents of the columns
• Event type

For details about this data, see Interactive Brokers API Reference Guide.

Cancel the real-time market data request using tickerid.

ib.Handle.cancelMktData(tickerid)

Remove event handler assignments for each real-time event.
evtListeners = ib.Handle.eventlisteners;
eventTypes = {'tickSize','tickPrice','tickSnapshotEnd', ...
 'tickOptionComputation','tickGeneric','tickString', ...
 'tickEFP','marketDataType'};
for j = 1:length(eventTypes)
 i = strcmp(evtListeners(:,1),eventTypes{j});
 ib.Handle.unregisterevent([{evtListeners{i,1}}' {evtListeners{i,2}}']);
end

Close the IB Trader Workstation connection.

close(ib)

Input Arguments
ib — IB Trader Workstation connection
connection object

6 Functions — Alphabetical List

6-294

https://www.interactivebrokers.com/en/software/api/api.htm

IB Trader Workstation connection, specified as an IB Trader Workstation connection
object created using ibtws.

ibContract — IB Trader Workstation contract
IContract object | cell array

IB Trader Workstation contract, specified as an IB Trader Workstation IContract object
or a cell array for multiple IB Trader Workstation IContract objects. This object is the
instrument or security used in the order transaction. Create this object by calling the
Interactive Brokers API function createContract. For details about createContract
and the attributes that you can set, see Interactive Brokers API Reference Guide.
Data Types: cell

f — Interactive Brokers fields
character vector | string scalar | cell array of character vectors | string array

Interactive Brokers fields, specified as a character vector, string scalar, cell array of
character vectors, or string array. These fields correspond to numeric identifiers that
specify the Interactive Brokers generic market data tick types. For details, see Interactive
Brokers API Reference Guide.
Data Types: char | cell | string

eventhandler — Event handler
function handle | character vector | string scalar

Event handler, specified as a function handle, character vector, or string scalar to identify
an event handler function that processes the returned data. Use the sample event handler
or write a custom event handler function. For details, see “Writing and Running Custom
Event Handler Functions with Interactive Brokers” on page 1-28.
Example: @eventhandler
Data Types: function_handle | char | string

Output Arguments
tickerid — Interactive Brokers market request identifier
double

 realtime

6-295

https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm
https://www.interactivebrokers.com/en/software/api/api.htm

Interactive Brokers market request identifier, specified as a double for tracking and
canceling the market data request. tickerid is a scalar for one Interactive Brokers
contract and a vector of scalars for multiple contracts.

Tips
If the variable ibBuiltInErrMsg appears in the MATLAB workspace, check the status of
the connection and function execution by displaying the contents of this variable.
ibBuiltInErrMsg contains messages related to:

• Connection
• Information resulting from executing functions
• Errors

See Also
close | createOrder | history | ibtws | timeseries

Topics
“Request Interactive Brokers Real-Time Data” on page 4-36
“Workflow for Interactive Brokers” on page 2-6
“Writing and Running Custom Event Handler Functions with Interactive Brokers” on page
1-28

External Websites
Interactive Brokers API Reference Guide

Introduced in R2015a

6 Functions — Alphabetical List

6-296

https://www.interactivebrokers.com/en/software/api/api.htm

fixflyer
Create FIX Flyer Engine connection

Description
The fixflyer function creates a fixflyer object, which represents a FIX Flyer Engine
connection. After you create a fixflyer object, you can use the object functions to send
FIX messages and retrieve order information and status.

Creation

Syntax
c = fixflyer(username,password,ipaddress,fixport)
c = fixflyer(username,password,ipaddress,fixport,restport)

Description
c = fixflyer(username,password,ipaddress,fixport) creates a connection c to
the FIX Flyer Engine with a user name, password, and IP address, and sets the FIXPort
property.

c = fixflyer(username,password,ipaddress,fixport,restport) also sets the
RestPort property for order information retrieval.

Input Arguments
username — FIX Flyer user name
character vector | string scalar

FIX Flyer user name, specified as a character vector or string scalar.
Example: 'guest'

 fixflyer

6-297

Data Types: char | string

password — FIX Flyer password
character vector | string scalar

FIX Flyer password, specified as a character vector or string scalar.
Data Types: char | string

ipaddress — IP address
character vector | string scalar

IP address, specified as a character vector or string scalar to indicate the IP address of
the computer running the FIX Flyer Engine.
Example: '127.0.0.1'
Data Types: char | string

Properties
User — FIX Flyer user name
character vector

FIX Flyer user name, specified as a character vector.

The fixflyer function sets this property using the username input argument.
Example: 'guest'
Data Types: char

Ipaddress — IP address
character vector

IP address of the computer running the FIX Flyer Engine, specified as a character vector.

The fixflyer function sets this property using the ipaddress input argument.
Example: '127.0.0.1'
Data Types: char

FIXPort — Port number
numeric scalar

6 Functions — Alphabetical List

6-298

Port number of the computer running the FIX Flyer Engine, specified as a numeric scalar.
Example: 12001
Data Types: double

RestPort — Order information port number
numeric scalar

Order information port number of the computer running the FIX Flyer Engine, specified
as a numeric scalar. This property appears only when you run the fixflyer function and
specify the restport input argument.
Example: 13001
Data Types: double

FlyerApplicationManager — FIX Flyer application
FIX Flyer application manager object

FIX Flyer application, specified as a FIX Flyer application manager object.
Example: [1x1 flyer.apps.FlyerApplicationManager]

SessionID — FIX Flyer session identifier
double

FIX Flyer session identifier, specified as a double.
Data Types: double

Object Functions
close Close FIX Flyer connection
sendMessage Send FIX message to FIX Flyer Engine
orderInfo Retrieve FIX Flyer order status and information
addListener Add event handling listener to FIX Flyer connection

Examples

 fixflyer

6-299

Create FIX Flyer Engine Connection

Create a FIX Flyer connection and display the connection properties.

Note To create a FIX Flyer connection for the first time, add the JAR file fix-
flyer.jar to the static Java class path. For details, see “Installation” on page 1-3.

Import the FIX Flyer Java libraries.

import flyer.apps.*;
import flyer.apps.FlyerApplicationManagerFactory.*;
import flyer.core.session.*;

Use these arguments to create the FIX Flyer Engine connection and display the
connection properties:

• username
• password
• ipaddress
• port

username = 'user';
password = 'pwd';
ipaddress = '127.0.0.1';
port = 7002;

c = fixflyer(username,password,ipaddress,port)

c =

 fixflyer with properties:

 User: 'user'
 Ipaddress: '127.0.0.1'
 FIXPort: 7002.00
 RestPort: []
 FlyerApplicationManager: [1x1 flyer.apps.FlyerApplicationManager]
 SessionID: []

c is the FIX Flyer Engine connection object with these properties:

6 Functions — Alphabetical List

6-300

• User name
• IP address
• Port number
• Order information port number
• FIX Flyer application manager instance
• FIX Flyer session identifier

After creating a FIX Flyer connection, you can send a FIX message. For details, see
sendMessage.

Close the FIX Flyer connection.

close(c)

Create FIX Flyer Engine Connection for Order Information Retrieval

Create a FIX Flyer connection and display the connection properties.

Note To create a FIX Flyer connection for the first time, add the JAR file fix-
flyer.jar to the static Java class path. For details, see “Installation” on page 1-3.

Import the FIX Flyer Java libraries.

import flyer.apps.*;
import flyer.apps.FlyerApplicationManagerFactory.*;
import flyer.core.session.*;

Use these arguments to create the FIX Flyer Engine connection and display the
connection properties:

• username
• password
• ipaddress
• port
• orderport

 fixflyer

6-301

username = 'guest';
password = 'guest';
ipaddress = 'example.fixcomputeserver.com';
port = 12001;
orderport = 13001;

c = fixflyer(username,password,ipaddress,port,orderport)

c =

 fixflyer with properties:

 User: 'guest'
 Ipaddress: 'example.fixcomputeserver.com'
 FIXPort: 12001
 RestPort: 13001
 FlyerApplicationManager: [1x1 flyer.apps.FlyerApplicationManager]
 SessionID: []

c is the FIX Flyer Engine connection object with these properties:

• User name
• IP address
• Port number
• Order information port number
• FIX Flyer application manager instance
• FIX Flyer session identifier

After creating a FIX Flyer connection, you can retrieve order information for active and
closed orders. For details, see orderInfo.

Close the FIX Flyer connection.

close(c)

See Also

Topics
“Create an Order Using FIX Flyer” on page 1-20

6 Functions — Alphabetical List

6-302

External Websites
Files Provided by FIX Flyer
FIX Trading Community

Introduced in R2015b

 fixflyer

6-303

https://files.fixflyer.com/login
https://www.fixtrading.org/

addListener
Add event handling listener to FIX Flyer connection

Syntax
lh = addListener(c,listener)

Description
lh = addListener(c,listener) adds the event handling listener listener to the
FIX Flyer Engine connection c. Use the sample event handling listener
fixExampleListener or write a custom event handling listener function.

Examples

Listen for FIX Flyer Event Data

First, create a FIX Flyer Engine connection. Then, add a FIX Flyer event listener to the
FIX Flyer Engine connection, and listen for and display the event data in the Workspace
browser.

Create the FIX Flyer Engine connection c using these arguments:

• User name username
• Password password
• IP address ipaddress
• Port number port

username = 'user';
password = 'pwd';
ipaddress = '127.0.0.1';
port = 7002;

c = fixflyer(username,password,ipaddress,port);

6 Functions — Alphabetical List

6-304

Add the FIX Flyer event listener to the FIX Flyer Engine connection. Use the sample
event handling listener fixExampleListener to listen for and display the FIX Flyer
Engine event data in the Workspace browser. To access the code for the listener, enter
edit fixExampleListener.m. Or, to process the event data in another way, you can
write a custom event handling listener function. For details, see “Create Functions in
Files” (MATLAB).

Process the FIX Flyer Engine events e using the sample event handling listener
fixExampleListener. Specify e as any letter. fixExampleListener returns a handle
to the listener lh.

lh = addListener(c,@(~,e)fixExampleListener(e,c));

When events occur, fixExampleListener returns event data to objects in the MATLAB
Workspace. To view event data, double-click the object. The Variables dialog box displays
the data in the object.

Close the FIX Flyer Engine connection.

close(c)

Input Arguments
c — FIX Flyer Engine connection
fixflyer object

FIX Flyer Engine connection, specified as a fixflyer object.

listener — Listener event handler
function handle

Listener event handler, specified as a function handle to listen for FIX Flyer Engine event
data. You can modify the existing listener function or define your own. The code for the
existing listener function is in the fixExampleListener.m file.
Data Types: function_handle

 addListener

6-305

Output Arguments
lh — Listener handle
object handle

Listener handle, returned as a handle to a FIX Flyer listener object.

See Also
close | fixflyer | sendMessage

Topics
“Create an Order Using FIX Flyer” on page 1-20

Introduced in R2015b

6 Functions — Alphabetical List

6-306

sendMessage
Send FIX message to FIX Flyer Engine

Syntax
status = sendMessage(c,fixmsg)

Description
status = sendMessage(c,fixmsg) sends the FIX message fixmsg using the FIX
Flyer Engine connection c.

Examples

Send FIX Message

First, create a FIX Flyer Engine connection. Then, add a FIX Flyer event listener to the
FIX Flyer Engine connection. Subscribe to FIX sessions. Create and send two FIX
messages.

Create the FIX Flyer Engine connection c using these arguments:

• User name username
• Password password
• IP address ipaddress
• Port number port

username = 'user';
password = 'pwd';
ipaddress = '127.0.0.1';
port = 7002;

c = fixflyer(username,password,ipaddress,port);

 sendMessage

6-307

Add the FIX Flyer event listener to the FIX Flyer Engine connection. Use the sample
event handling listener fixExampleListener to listen for and display the FIX Flyer
Engine event data in the Workspace browser. To access the code for the listener, enter
edit fixExampleListener.m. Or, to process the event data in another way, you can
write a custom event handling listener function. For details, see “Create Functions in
Files” (MATLAB).

Process the FIX Flyer Engine events e using the sample event handling listener
fixExampleListener. Specify e as any letter. fixExampleListener returns a handle
to the listener lh.

lh = addListener(c,@(~,e)fixExampleListener(e,c));

Subscribe to FIX sessions and set up the FIX Flyer Application Manager. Register with the
FIX Flyer session. Connect the FIX Flyer Application Manager to the FIX Flyer Engine
and start the internal receiving thread.
c.SessionID = flyer.core.session.SessionID('Alpha',...
 'Beta','FIX.4.4');
c.FlyerApplicationManager.setLoadDefaultDataDictionary(false);
c.FlyerApplicationManager.registerFIXSession(...
 flyer.apps.FixSessionSubscription(...
 c.SessionID,true,0));
c.FlyerApplicationManager.connect;
c.FlyerApplicationManager.start;

Create a FIX message using table fixtable. This table contains two FIX messages. The
first row in the table represents a sell side transaction for 100 shares of symbol ABC. The
order type is a previously quoted order. The order handling instruction is a private
automated execution. The order transaction time is the current moment. The second row
in the table has the same order field variables, except that the order identifier is unique
across orders. The FIX protocol version is 4.4.

fixtable = table({'FIX.4.4';'FIX.4.4'},...
 {'338';'339'},{'2';'2'},...
 {datestr(now);datestr(now)},...
 {'D';'D'},{'ABC';'ABC'},...
 {'1';'1'},{'D';'D'},{'100';'100'},...
 'VariableNames',{'BeginString' ...
 'CLOrdId' 'Side' 'TransactTime' ...
 'OrdType' 'Symbol' ...
 'HandlInst' 'MsgType' 'OrderQty'});

Send the FIX message using the FIX message fixtable.

6 Functions — Alphabetical List

6-308

status contains the FIX Flyer Engine message status for each FIX message sent. If the
FIX message is sent successfully, status contains a logical zero. status has an entry for
each FIX message in fixtable.

status = sendMessage(c,fixtable)

status =

 0
 0

The MATLAB Workspace variable fixResponseStruct contains the returned FIX
messages from the FIX Flyer Engine.

Close the FIX Flyer Engine connection.

close(c)

Input Arguments
c — FIX Flyer Engine connection
fixflyer object

FIX Flyer Engine connection, specified as a fixflyer object.

fixmsg — FIX message
table | structure

FIX message, specified as a table or structure.
Example: fixtable = table({'FIX.4.4';'FIX.4.4'},...
{'338';'339'},{'2';'2'},...
{datestr(now);datestr(now)},...
{'D';'D'},{'ABC';'ABC'},...
{'1';'1'},{'D';'D'},{'100';'100'},...
'VariableNames',{'BeginString' ...
'CLOrdId' 'Side' 'TransactTime' ...
'OrdType' 'Symbol' ...
'HandlInst' 'MsgType' 'OrderQty'});

Data Types: table | struct

 sendMessage

6-309

Output Arguments
status — Sent message status
logical

Sent message status, returned as an array of logical zeroes or ones. The array contains an
entry for each FIX message in fixmsg. If a FIX message is sent successfully, status
contains a zero. Otherwise, status contains a 1.

See Also
addListener | close | fixflyer

Topics
“Create an Order Using FIX Flyer” on page 1-20

External Websites
FIX Trading Community

Introduced in R2015b

6 Functions — Alphabetical List

6-310

https://www.fixtrading.org/

orderInfo
Retrieve FIX Flyer order status and information

Syntax
o = orderInfo(c)
o = orderInfo(c,status)
o = orderInfo(c,infoterm,infovalue)

Description
o = orderInfo(c) returns order information for all orders associated with the FIX
Flyer connection c.

o = orderInfo(c,status) filters orders by the order status.

o = orderInfo(c,infoterm,infovalue) filters orders by a specified term infoterm
and value infovalue.

Examples

Return Order Information for All Orders

First, create a FIX Flyer Engine connection, add a FIX Flyer event listener, and subscribe
to FIX sessions as in “Create an Order Using FIX Flyer” on page 1-20. Then, create and
send a FIX message for a new order. Display the order information for all orders.

Create structure orderStruct to contain the FIX message for a new order. This order is
a market order to sell 1000 IBM shares.

orderStruct.BeginString{1,1} = 'FIX.4.4';
orderStruct.CLOrdId{1,1} = '338';
orderStruct.Side{1,1} = '2';
orderStruct.TransactTime{1,1} = datestr(now);

 orderInfo

6-311

orderStruct.OrdType{1,1} = 'D';
orderStruct.Symbol{1,1} = 'IBM';
orderStruct.HandlInst{1,1} = '1';
orderStruct.MsgType{1,1} = 'D';
orderStruct.OrderQty{1,1} = '1000';
orderStruct.HeaderFields{1,1} = {'OnBehalfOfCompID','TRADER'};
orderStruct.BodyFields{1,1} = {'NoPartyIDs','3'; ...
 'PartyID','1'; ...
 'PartyRole','BBVA'; ...
 'PartyID','1'; ...
 'PartyRole','CVGX'; ...
 'PartyID','1'; ...
 'PartyRole','GSAM'};

Send FIX message using the FIX Flyer connection and the FIX message.

status = sendMessage(c,orderStruct);

Return and display the order information o for all orders. The Variables editor displays
the contents of o.

o = orderInfo(c);
openvar('o')

Close the FIX Flyer Engine connection.

close(c)

Return Order Information for All Open Orders

First, create a FIX Flyer Engine connection, add a FIX Flyer event listener, and subscribe
to FIX sessions as in “Create an Order Using FIX Flyer” on page 1-20. Then, create and
send a FIX message for a new order. Display the order information for all open orders.

Create structure orderStruct to contain the FIX message for a new order. This order is
a market order to sell 1000 IBM shares.

orderStruct.BeginString{1,1} = 'FIX.4.4';
orderStruct.CLOrdId{1,1} = '338';
orderStruct.Side{1,1} = '2';
orderStruct.TransactTime{1,1} = datestr(now);
orderStruct.OrdType{1,1} = 'D';
orderStruct.Symbol{1,1} = 'IBM';

6 Functions — Alphabetical List

6-312

orderStruct.HandlInst{1,1} = '1';
orderStruct.MsgType{1,1} = 'D';
orderStruct.OrderQty{1,1} = '1000';
orderStruct.HeaderFields{1,1} = {'OnBehalfOfCompID','TRADER'};
orderStruct.BodyFields{1,1} = {'NoPartyIDs','3'; ...
 'PartyID','1'; ...
 'PartyRole','BBVA'; ...
 'PartyID','1'; ...
 'PartyRole','CVGX'; ...
 'PartyID','1'; ...
 'PartyRole','GSAM'};

Send FIX message using the FIX Flyer connection and the FIX message.

status = sendMessage(c,orderStruct);

Return and display the order information o for all open orders. The Variables editor
displays the contents of o.

o = orderInfo(c,'open');
openvar('o')

Close the FIX Flyer Engine connection.

close(c)

Return Order Information for Specific Symbol

First, create a FIX Flyer Engine connection, add a FIX Flyer event listener, and subscribe
to FIX sessions as in “Create an Order Using FIX Flyer” on page 1-20. Then, create and
send a FIX message for a new order. Display the order information for orders using a
specific symbol.

Create structure orderStruct to contain the FIX message for a new order. This order is
a market order to sell 1000 IBM shares.

orderStruct.BeginString{1,1} = 'FIX.4.4';
orderStruct.CLOrdId{1,1} = '338';
orderStruct.Side{1,1} = '2';
orderStruct.TransactTime{1,1} = datestr(now);
orderStruct.OrdType{1,1} = 'D';
orderStruct.Symbol{1,1} = 'IBM';
orderStruct.HandlInst{1,1} = '1';

 orderInfo

6-313

orderStruct.MsgType{1,1} = 'D';
orderStruct.OrderQty{1,1} = '1000';
orderStruct.HeaderFields{1,1} = {'OnBehalfOfCompID','TRADER'};
orderStruct.BodyFields{1,1} = {'NoPartyIDs','3'; ...
 'PartyID','1'; ...
 'PartyRole','BBVA'; ...
 'PartyID','1'; ...
 'PartyRole','CVGX'; ...
 'PartyID','1'; ...
 'PartyRole','GSAM'};

Send FIX message using the FIX Flyer connection and the FIX message.

status = sendMessage(c,orderStruct);

Return and display the order information o for transactions of IBM shares. The Variables
editor displays the contents of o.

o = orderInfo(c,'symbol','IBM');
openvar('o')

Close the FIX Flyer Engine connection.

close(c)

Input Arguments
c — FIX Flyer Engine connection
fixflyer object

FIX Flyer Engine connection, specified as a fixflyer object.

status — Order status
'all' (default) | 'closed' | 'open'

Order status, specified as one of these values. Each value specifies the order information
to return.

Order Status Value Description
'all' All orders
'closed' Closed orders only

6 Functions — Alphabetical List

6-314

Order Status Value Description
'open' Open orders only

Example: o = orderInfo(c,'all')
Data Types: char

infoterm — Order information term
'clientorderid' | 'orderstatus' | 'securityid' | 'symbol'

Order information term, specified as one of these values. Each value filters the order
information to return.

Value Description
'clientorderid' Client order identifier
'orderstatus' Order status
'securityid' Security identifier
'symbol' Symbol

To filter order information, specify a corresponding order information term value
infovalue after infoterm. For example, to specify a client order identifier of 10, use
'clientorderid','10'.
Example: o = orderInfo(c,'orderstatus','1')
Data Types: char

infovalue — Order information term value
character vector | string scalar

Order information term value, specified as a character vector or string scalar.

To filter order information, specify this value after a corresponding order information
term infoterm. For example, to specify the IBM symbol, use 'symbol','IBM'.
Example: o = orderInfo(c,'orderstatus','1')
Data Types: char | string

 orderInfo

6-315

Output Arguments
o — Order information data
structure

Order information data, returned as a structure. The structure contains many fields
where each field is one piece of order information data provided by FIX Flyer.

See Also
addListener | fixflyer | sendMessage

Topics
“Create an Order Using FIX Flyer” on page 1-20

External Websites
FIX Trading Community

Introduced in R2016b

6 Functions — Alphabetical List

6-316

https://www.fixtrading.org/

close
Close FIX Flyer connection

Syntax
close(c)

Description
close(c) closes the FIX Flyer Engine connection c.

Examples

Close the FIX Flyer Connection

Create the FIX Flyer Engine connection c using these arguments:

• User name username
• Password password
• IP address ipaddress
• Port number port

username = 'user';
password = 'pwd';
ipaddress = '127.0.0.1';
port = 7002;

c = fixflyer(username,password,ipaddress,port);

Close the FIX Flyer Engine connection.

 close

6-317

close(c)

Input Arguments
c — FIX Flyer Engine connection
fixflyer object

FIX Flyer Engine connection, specified as a fixflyer object.

See Also
fixflyer

Topics
“Create an Order Using FIX Flyer” on page 1-20

Introduced in R2015b

6 Functions — Alphabetical List

6-318

fix2struct
Convert FIX message to structure array

Syntax
fixstruct = fix2struct(fixstr)

Description
fixstruct = fix2struct(fixstr) converts raw FIX messages in the cell array
fixstr to a structure array fixstruct.

Examples

Convert FIX Message to Structure Array

For this example, assume that a counterparty sends you two raw FIX messages in
fixstr. The FIX protocol version is 4.4.

Convert raw FIX messages in fixstr to a structure array fixstruct.

fixstruct = fix2struct(fixstr)

fixstruct =

 BeginString: {2x1 cell}
 ClOrdID: {2x1 cell}
 Side: {2x1 cell}
 TransactTime: {2x1 cell}
 OrdType: {2x1 cell}
 Symbol: {2x1 cell}
 HandlInst: {2x1 cell}
 MsgType: {2x1 cell}
 OrderQty: {2x1 cell}

 fix2struct

6-319

The structure array fixstruct contains a structure for each raw FIX message in
fixstr. The structure fields correspond to the FIX tags in the raw FIX message.

Display the order type for each FIX message.

fixstruct.OrdType

ans =

 'D'
 'D'

Both FIX messages specify previously quoted orders.

Input Arguments
fixstr — FIX message
cell array

FIX message, specified as a cell array of one or more raw FIX messages.
Data Types: cell

Output Arguments
fixstruct — FIX message
structure

FIX message, specified as a structure array containing the converted raw FIX messages in
fixstr. The structure fields and values correspond to the FIX tag names and values in
the raw FIX message.

See Also
fix2table | fixflyer | struct2fix | table2fix

External Websites
FIX Trading Community

6 Functions — Alphabetical List

6-320

https://www.fixtrading.org/

Introduced in R2015b

 fix2struct

6-321

fix2table
Convert FIX message to table

Syntax
fixtable = fix2table(fixstr)

Description
fixtable = fix2table(fixstr) converts raw FIX messages in the cell array fixstr
to a table fixtable.

Examples

Convert FIX Message to Table

For this example, assume that a counterparty sends you two raw FIX messages in
fixstr. The FIX protocol version is 4.4.

Convert raw FIX messages in fixstr to a table fixtable.

fixtable = fix2table(fixstr)

fixtable =

 BeginString MsgType OnBehalfOfCompID ClOrdID Side TransactTime OrdType Symbol HandlInst OrderQty NoPartyIDs PartyID PartyRole
 ___________ _______ ________________ _______ ____ ______________________ _______ ______ _________ ________ __________ _________________ __________________________

 'FIX.4.4' 'D' 'TRADER' '338' '2' '22-Mar-2016 11:34:47' 'D' 'IBM' '1' '1000' '3' '1' '1' '1' 'BBVA' 'CVGX' 'GSAM'
 'FIX.4.4' 'D' 'TRADER' '339' '2' '22-Mar-2016 11:36:58' 'D' 'IBM' '1' '1000' '3' '1' '1' '1' 'BBVA' 'CVGX' 'GSAM'

The table fixtable contains a row for each raw FIX message in fixstr. The variable
names in the table correspond to the FIX tags in the raw FIX message.

Display the order type for each FIX message.

fixtable.OrdType

6 Functions — Alphabetical List

6-322

ans =

 2×1 cell array

 'D'
 'D'

Both FIX messages specify previously quoted orders.

Input Arguments
fixstr — FIX message
cell array

FIX message, specified as a cell array of one or more raw FIX messages.
Data Types: cell

Output Arguments
fixtable — FIX message
table

FIX message, specified as a table containing the converted raw FIX messages in fixstr.
The table variables correspond to the FIX tag names that are specified in the raw FIX
message. The table row contains the values that are specified for each tag in the raw FIX
message.

See Also
fix2struct | fixflyer | struct2fix | table2fix

External Websites
FIX Trading Community

Introduced in R2015b

 fix2table

6-323

https://www.fixtrading.org/

struct2fix
Convert structure array containing FIX tags to cell array of FIX messages

Syntax
fixstr = struct2fix(fixstruct)

Description
fixstr = struct2fix(fixstruct) converts FIX messages in a structure array
fixstruct to raw FIX messages in the cell array fixstr.

Examples

Convert FIX Message from Structure Array to Character Vector

Create two FIX messages using a structure array fixstruct. The FIX protocol version is
4.4. Each FIX message represents a sell side transaction for 100 shares of symbol ABC.
The order transaction time is the current moment. The order type is a previously quoted
order. The order handling instruction is a private automated execution. The message type
indicates a new order. The second structure in the structure array has the same order
field values except that the order identifier is unique across orders.

fixstruct.BeginString{1,1} = 'FIX.4.4';
fixstruct.CLOrdId{1,1} = '338';
fixstruct.Side{1,1} = '2';
fixstruct.TransactTime{1,1} = datestr(now);
fixstruct.OrdType{1,1} = 'D';
fixstruct.Symbol{1,1} = 'ABC';
fixstruct.HandlInst{1,1} = '1';
fixstruct.OrderQty{1,1} = '100';
fixstruct.MsgType{1,1} = 'D';

fixstruct.BeginString{2,1} = 'FIX.4.4';

6 Functions — Alphabetical List

6-324

fixstruct.CLOrdId{2,1} = '339';
fixstruct.Side{2,1} = '2';
fixstruct.TransactTime{2,1} = datestr(now);
fixstruct.OrdType{2,1} = 'D';
fixstruct.Symbol{2,1} = 'ABC';
fixstruct.HandlInst{2,1} = '1';
fixstruct.OrderQty{2,1} = '100';
fixstruct.MsgType{2,1} = 'D';

Convert FIX messages in the structure array fixstruct to a cell array of raw FIX
messages fixstr.

fixstr = struct2fix(fixstruct)

fixstr =

 2×1 cell array

 '8=FIX.4.4 35=D 11=338 54=2 60=16-Aug-2016 14:56:48 40=D 55=ABC 21=1 38...'
 '8=FIX.4.4 35=D 11=339 54=2 60=16-Aug-2016 14:56:48 40=D 55=ABC 21=1 38...'

Each character vector is a raw FIX message that contains FIX tags and values. The space
in between the tag and value pairs is a SOH character. This character is not printable and
has a hexadecimal value of 0x01.

Input Arguments
fixstruct — FIX message
structure

FIX message, specified as a structure array. The data in the structure represents one FIX
message. The structure fields correspond to FIX tag names. The structure values are the
values that you specify in the FIX message.
Example: fixStruct.BeginString{1,1} = 'FIX.4.4';
fixStruct.CLOrdId{1,1} = '338';
fixStruct.Side{1,1} = '2';
fixStruct.TransactTime{1,1} = datestr(now);
fixStruct.OrdType{1,1} = 'D';
fixStruct.Symbol{1,1} = 'ABC';

 struct2fix

6-325

fixStruct.HandlInst{1,1} = '1';
fixStruct.MsgType{1,1} = 'D';
fixStruct.OrderQty{1,1} = '100';

Data Types: struct

Output Arguments
fixstr — FIX message
cell array

FIX message, returned as a cell array of one or more converted raw FIX messages. The
number of messages in the output argument depends on the number of messages that you
specify in the input argument.

See Also
fix2struct | fix2table | fixflyer | table2fix

Topics
“Create an Order Using FIX Flyer” on page 1-20

External Websites
FIX Trading Community

Introduced in R2015b

6 Functions — Alphabetical List

6-326

https://www.fixtrading.org/

table2fix
Convert table containing FIX tags to cell array of FIX messages

Syntax
fixstr = table2fix(fixtable)

Description
fixstr = table2fix(fixtable) converts the FIX messages in the table fixtable to
raw FIX messages in the cell array fixstr.

Examples

Convert FIX Message from Table to Character Vector

Create two FIX messages using a table fixtable. The FIX protocol version is 4.4. The
first row in the table represents a sell side transaction for 100 shares of symbol ABC. The
order type is a previously quoted order. The order handling instruction is a private
automated execution. The order transaction time is the current moment. The message
type indicates a new order. The second row in the table has the same order field variables
except that the order identifier is unique across orders.

fixtable = table({'FIX.4.4';'FIX.4.4'}, ...
 {'338';'339'},{'2';'2'}, ...
 {datestr(now);datestr(now)}, ...
 {'D';'D'},{'ABC';'ABC'}, ...
 {'1';'1'},{'D';'D'},{'100';'100'}, ...
 'VariableNames',{'BeginString' ...
 'CLOrdId' 'Side' 'TransactTime' ...
 'OrdType' 'Symbol' ...
 'HandlInst' 'MsgType' 'OrderQty'});

Convert the FIX messages in the table fixtable to a cell array of the raw FIX messages
fixstr.

 table2fix

6-327

fixstr = table2fix(fixtable)

fixstr =

 2×1 cell array

 '8=FIX.4.4 35=D 11=338 54=2 60=16-Aug-2016 14:56:01 40=D 55=ABC 21=1 38...'
 '8=FIX.4.4 35=D 11=339 54=2 60=16-Aug-2016 14:56:01 40=D 55=ABC 21=1 38...'

Each character vector is a raw FIX message that contains FIX tags and values. The space
in between the tag and value pairs is a SOH character. This character is not printable and
has a hexadecimal value of 0x01.

Input Arguments
fixtable — FIX message
table

FIX message, specified as table. The table variables correspond to FIX tag names. Each
row contains the values you specify for the FIX message. Specify the values for each
variable as a cell array of character vectors or string array.
Example: fixtable = table({'FIX.4.4';'FIX.4.4'},...
{'338';'339'},{'2';'2'},...
{datestr(now);datestr(now)},...
{'D';'D'},{'ABC';'ABC'},...
{'1';'1'},{'D';'D'},{'100';'100'},...
'VariableNames',{'BeginString' ...
'CLOrdId' 'Side' 'TransactTime' ...
'OrdType' 'Symbol' ...
'HandlInst' 'MsgType' 'OrderQty'});

Data Types: table

Output Arguments
fixstr — FIX message
cell array

6 Functions — Alphabetical List

6-328

FIX message, returned as a cell array of one or more converted raw FIX messages. The
number of messages in the output argument depends on the number of messages that you
specify in the input argument.

See Also
fix2struct | fix2table | fixflyer | struct2fix

Topics
“Create an Order Using FIX Flyer” on page 1-20

External Websites
FIX Trading Community

Introduced in R2015b

 table2fix

6-329

https://www.fixtrading.org/

krg
Create Kissell Research Group transaction cost analysis object

Description
To begin a transaction cost analysis, use MATLAB to retrieve the encrypted market-
impact parameters from the Kissell Research Group (KRG) FTP site. Then, use the krg
function to create a krg object in which to store the encrypted data. After you create a
krg object, you can use the object functions to estimate trading costs, optimize trading
strategies for a single stock or a portfolio, and conduct back testing and stress testing.
For details about market-impact parameters and data, consult the Kissell Research Group.
For a simple example of estimating trading costs, see “Estimate Trading Costs for
Collection of Stocks” on page 3-45.

Creation

Syntax
k = krg(midata)
k = krg(midata,midate)
k = krg(midata,midate,micode)
k = krg(midata,midate,micode,tradedaysinyear)

Description
k = krg(midata) creates a transaction cost analysis object and sets the MiData
property.

k = krg(midata,midate) also selects a market-impact date.

k = krg(midata,midate,micode) also sets the MiCode property.

k = krg(midata,midate,micode,tradedaysinyear) also sets the TradeDaysInYear
property.

6 Functions — Alphabetical List

6-330

Input Arguments
midate — Market-impact date
double | character vector | string | datetime array

Market-impact date, specified as a double, character vector, string, or datetime array.
By default, the market-impact date is the current date. To decrypt market-impact
parameters for a specific date, specify the date using this input argument. For details,
consult the Kissell Research Group.
Example: 'yesterday'
Data Types: double | char | string | datetime

Properties
MiData — KRG market-impact data
table

Market-impact data, specified as a table. This table contains the encrypted market-impact
date, code, and parameters. Retrieve this data from the KRG FTP site ftp://
ftp.kissellresearch.com using your user name and password. For details, consult the
Kissell Research Group.
Example: [276x12 table]
Data Types: table

MiDate — KRG market-impact date
datetime array

Market-impact date, specified as a datetime array. By default, the market-impact date is
the current date. To decrypt market-impact parameters for a specific date, specify the
date using the midate input argument. For details, consult the Kissell Research Group.

The krg function sets this property using the midate input argument.
Example: 09-Sep-2015
Data Types: datetime

MiCode — KRG market-impact code
numeric scalar

 krg

6-331

ftp://ftp.kissellresearch.com
ftp://ftp.kissellresearch.com

Market-impact code, specified as a numeric scalar. By default, the market-impact code is
1. To decrypt market-impact parameters for a specific market region, specify the code by
setting this property using dot notation. For details, consult the Kissell Research Group.
Example: 1
Data Types: double

TradeDaysInYear — Number of trading days in year
250 (default) | numeric scalar

Number of trading days in the year, specified as a numeric scalar.
Example: 251
Data Types: double

Object Functions
costCurves Estimate market-impact cost of order execution
iStar Estimate instantaneous trading cost for order
liquidityFactor Estimate and compare liquidation costs across stocks
marketImpact Estimate price movement due to order or trade
portfolioCostCurves Estimate market-impact cost of order execution for portfolio
priceAppreciation Estimate trading cost due to natural price movement
timingRisk Estimate uncertainty of market impact cost

Examples

Create Transaction Cost Analysis Object

First, retrieve market-impact data from KRG. Then, create a transaction cost analysis
object and estimate trading costs for the current day.

Retrieve the market impact data from the KRG FTP site. Connect to the FTP site using the
ftp function with a user name and password. Navigate to the MI_Parameters folder and
retrieve the market impact data in the MI_Encrypted_Parameters.csv file. miData
contains the encrypted market impact date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');

6 Functions — Alphabetical List

6-332

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a KRG transaction cost analysis object k.

k = krg(miData)

k =

 krg with properties:

 MiData: [276x12 table]
 MiDate: 09-Sep-2015
 MiCode: 1.00
 TradeDaysInYear: 250.00

k has these properties:

• Market-impact data
• Market-impact date
• Market-impact code
• Number of trading days in the year

Load the example data TradeData from the file KRGExampleData.mat, which is
included with Trading Toolbox.

load KRGExampleData.mat TradeData

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Estimate the instantaneous trading cost itc using TradeData.

itc = iStar(k,TradeData);

You can estimate other trading costs using the market activity for the current day. For
details, see “Estimate Trading Costs for Collection of Stocks” on page 3-45.

 krg

6-333

Create Transaction Cost Analysis Object with Market-Impact Date

First, retrieve market-impact data from KRG. Then, create a transaction cost analysis
object using a specific date and estimate trading costs for that date.

Retrieve the market impact data from the KRG FTP site. Connect to the FTP site using the
ftp function with a user name and password. Navigate to the MI_Parameters folder and
retrieve the market impact data in the MI_Encrypted_Parameters.csv file. miData
contains the encrypted market impact date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a KRG transaction cost analysis object k with a specific market-impact date
midate. Set the date to yesterday.

midate = 'yesterday';

k = krg(miData,midate)

k =

 krg with properties:

 MiData: [276x12 table]
 MiDate: 09-Sep-2015
 MiCode: 1.00
 TradeDaysInYear: 250.00

Load the example data TradeData from the file KRGExampleData.mat, which is
included with Trading Toolbox.

load KRGExampleData.mat TradeData

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Estimate the instantaneous trading cost itc using TradeData.

itc = iStar(k,TradeData);

6 Functions — Alphabetical List

6-334

You can estimate other trading costs using the market activity for yesterday. For details,
see “Estimate Trading Costs for Collection of Stocks” on page 3-45.

Create Transaction Cost Analysis Object with Market-Impact Code

First, retrieve market-impact data from the KRG. Then, create a transaction cost analysis
object using a specific market-impact code, and estimate trading costs for a particular
market region.

Retrieve the market impact data from the KRG FTP site. Connect to the FTP site using the
ftp function with a user name and password. Navigate to the MI_Parameters folder and
retrieve the market impact data in the MI_Encrypted_Parameters.csv file. miData
contains the encrypted market impact date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a KRG transaction cost analysis object k with a specific market-impact code
micode. Set the date to yesterday. Set the code to 1.

midate = 'yesterday';
micode = 1;

k = krg(miData,midate,micode)

k =

 krg with properties:

 MiData: [276x12 table]
 MiDate: 09-Sep-2015
 MiCode: 1.00
 TradeDaysInYear: 250.00

Load the example data TradeData from the file KRGExampleData.mat, which is
included with Trading Toolbox.

load KRGExampleData.mat TradeData

 krg

6-335

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Estimate the instantaneous trading cost itc using TradeData.

itc = iStar(k,TradeData);

Using the market activity for yesterday, you can estimate trading costs for a particular
market region. For details, see “Estimate Trading Costs for Collection of Stocks” on page
3-45.

Create Transaction Cost Analysis Object with Number of Trading Days

First, retrieve market-impact data from the KRG. Then, create a transaction cost analysis
object using a specified number of trading days, and estimate trading costs for those
trading days.

Retrieve the market impact data from the KRG FTP site. Connect to the FTP site using the
ftp function with a user name and password. Navigate to the MI_Parameters folder and
retrieve the market impact data in the MI_Encrypted_Parameters.csv file. miData
contains the encrypted market impact date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a KRG transaction cost analysis object k with a specific number of trading days in
the year tradedays. Set the number of trading days to 251. Enter [] for the market-
impact date and code so that krg sets these input arguments to their default values.

tradedays = 251;

k = krg(miData,[],[],tradedays)

k =

 krg with properties:

 MiData: [276x12 table]
 MiDate: 09-Sep-2015

6 Functions — Alphabetical List

6-336

 MiCode: 1.00
 TradeDaysInYear: 251.00

Load the example data TradeData from the file KRGExampleData.mat, which is
included with Trading Toolbox.

load KRGExampleData.mat TradeData

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Estimate the instantaneous trading cost itc using TradeData.

itc = iStar(k,TradeData);

Using the market activity for yesterday, you can estimate trading costs for a particular
market region with 251 trading days in the year. For details, see “Estimate Trading Costs
for Collection of Stocks” on page 3-45.

Modify Transaction Cost Analysis Object Property

First, retrieve market-impact data from the KRG. Then, create a transaction cost analysis
object and set the market-impact date using the object properties.

Retrieve the market impact data from the KRG FTP site. Connect to the FTP site using the
ftp function with a user name and password. Navigate to the MI_Parameters folder and
retrieve the market impact data in the MI_Encrypted_Parameters.csv file. miData
contains the encrypted market impact date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a KRG transaction cost analysis object k using miData.

k = krg(miData);

Modify the MiDate property to retrieve market-impact data from a different day.

k.MiDate = '05-Dec-2015'

 krg

6-337

k =

 krg with properties:

 MiData: [276x12 table]
 MiDate: '05-Dec-2015'
 MiCode: 1.00
 TradeDaysInYear: 251.00

You can estimate trading costs using the market activity for the specified day. For details,
see “Estimate Trading Costs for Collection of Stocks” on page 3-45.

Tips
If the market-impact code does not exist in the market-impact data, this error appears.

The given region code does not match any records in the market impact data.

See Also
iStar | marketImpact | priceAppreciation | timingRisk

Topics
“Analyze Trading Execution Results” on page 3-2
“Estimate Portfolio Liquidation Costs” on page 3-27
“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23
“Optimize Percentage of Volume Trading Strategy” on page 3-32
“Optimize Trade Time Trading Strategy” on page 3-36
“Optimize Trade Schedule Trading Strategy” on page 3-40

External Websites
ftp://ftp.kissellresearch.com

Introduced in R2016a

6 Functions — Alphabetical List

6-338

ftp://ftp.kissellresearch.com

costCurves
Estimate market-impact cost of order execution

Syntax
cc = costCurves(k,trade,tradeQuantity,tqRange,tradeStrategy,tsRange)

Description
cc = costCurves(k,trade,tradeQuantity,tqRange,tradeStrategy,tsRange)
returns the market-impact costs of order execution using:

• Kissell Research Group (KRG) transaction cost analysis object k
• Trade data trade
• Trade quantity tradeQuantity with a range of values tqRange
• Trade strategy tradeStrategy with a range of values tsRange

Examples

Estimate Market-Impact Cost for an Order

Retrieve the market impact data from the KRG FTP site. Connect to the FTP site using the
ftp function with a user name and password. Navigate to the MI_Parameters folder and
retrieve the market impact data in the MI_Encrypted_Parameters.csv file. miData
contains the encrypted market impact date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k.

 costCurves

6-339

k = krg(miData);

Load the example data from the file KRGExampleData.mat, which is included with the
Trading Toolbox.

load KRGExampleData

The variable TradeData appears in the MATLAB workspace.

TradeData contains these variables:

• Stock symbol
• Stock price
• Average daily volume
• Volatility

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Estimate market-impact costs with the trade quantity 'Size' and strategy 'POV'.
Specify the trade quantity range with increments of 0.01 by starting from 0.01 and ending
at one. Specify the trade strategy range with increments of 0.05 by starting from 0.05 and
ending at 0.5.

cc = costCurves(k,TradeData,'Size',(0.01:0.01:1),'POV',(0.05:0.05:0.5));

Display the first three rows of market-impact cost data.

cc(1:3,:)

ans =

 Symbol Size Shares Dollars POV TradeTime Cost_BP Cost_DollarsPerShare Cost_Dollars
 ______ ____ _________ __________ ____ _________ _______ ____________________ ____________

 'AAL' 0.01 114764.24 6251208.50 0.05 0.19 11.42 0.06 7139.93
 'AAL' 0.01 114764.24 6251208.50 0.10 0.09 17.93 0.10 11210.76
 'AAL' 0.01 114764.24 6251208.50 0.15 0.06 23.42 0.13 14637.37

The market-impact cost data contains:

• Stock symbol

6 Functions — Alphabetical List

6-340

• Size
• Number of shares in the transaction
• Dollar amount of the transaction
• Percentage of volume to complete the transaction
• Trade time to complete the transaction in percentage of the day
• Market-impact cost in basis points
• Market-impact cost in dollars per share
• Market-impact cost in dollars

Display cost curves for the first stock for these percentage of volume rates: 5%, 15%,
25%, and 35%.

figure
subplot(2,2,1)
plot(cc.Size(1:10:1000)*100,cc.Cost_BP(1:10:1000))
grid on
axis([0 100 0 250])
xlabel({'Size','(%ADV)'})
ylabel({'Cost','(bps)'})
title('POV = 5%')
a = gca;
a.XAxis.TickLabelFormat = '%g%%';

subplot(2,2,2)
plot(cc.Size(3:10:1000)*100,cc.Cost_BP(3:10:1000))
grid on
axis([0 100 0 250])
xlabel({'Size','(%ADV)'})
ylabel({'Cost','(bps)'})
title('POV = 15%')
b = gca;
b.XAxis.TickLabelFormat = '%g%%';

subplot(2,2,3)
plot(cc.Size(5:10:1000)*100,cc.Cost_BP(5:10:1000))
grid on
axis([0 100 0 250])
xlabel({'Size','(%ADV)'})
ylabel({'Cost','(bps)'})
title('POV = 25%')
c = gca;

 costCurves

6-341

c.XAxis.TickLabelFormat = '%g%%';

subplot(2,2,4)
plot(cc.Size(7:10:1000)*100,cc.Cost_BP(7:10:1000))
grid on
axis([0 100 0 250])
xlabel({'Size','(%ADV)'})
ylabel({'Cost','(bps)'})
title('POV = 35%')
d = gca;
d.XAxis.TickLabelFormat = '%g%%';

6 Functions — Alphabetical List

6-342

This figure demonstrates how fast to trade a specific order size within a price level.

Input Arguments
k — Transaction cost analysis
KRG object

 costCurves

6-343

Transaction cost analysis, specified as a KRG object created using krg.

trade — Trade data
table | structure

Trade data that describes the stocks in the transaction, specified as a table or structure.
trade must contain these variable or field names.

Variable or Field Name Description
Symbol Stock symbol
Price Stock price
ADV Average daily volume
Volatility Volatility

Example: trade = table({'XYZ'},100.00,860000,0.27,'VariableNames',
{'Symbol' 'Price' 'ADV' 'Volatility'})

Example: trade =
struct('Symbol','XYZ','Price',100.00,'ADV',860000,'Volatility',0.27)

These examples do not represent real market data.
Data Types: struct | table

tradeQuantity — Trade quantity
'Size' | 'Shares' | 'Dollars'

Trade quantity, specified as one of these values.

Value Trade Quantity Description
'Size' Shares in the transaction, which is a

percentage of average daily trading volume
'Shares' Number of shares in the transaction
'Dollars' Total value of the transaction

tqRange — Trade quantity range
vector

6 Functions — Alphabetical List

6-344

Trade quantity range, specified as a vector. costCurves uses these values with the trade
strategy range values to estimate market-impact costs for different quantities and
strategies.
Example: 'Size',(0.01:0.01:1) specifies a trade quantity range with increments of
0.01 starting from 0.01 and ending at one
Data Types: double

tradeStrategy — Trade strategy
'POV' | 'TradeTime'

Trade strategy, specified as one of these values.

Values Trade Strategy Name
'POV' Percentage of volume
'TradeTime' Trade time in percentage of the day

tsRange — Trade strategy range
vector

Trade strategy range, specified as a vector. costCurves uses these values with the trade
quantity range values to estimate market-impact costs for different quantities and
strategies.
Example: 'POV',(0.05:0.05:0.5) specifies a trade strategy range with increments of
0.05 starting from 0.05 and ending at 0.5
Data Types: double

Output Arguments
cc — Cost curves
table | structure

Cost curves, returned as a table or structure with these variable names or fields.

Variable or Field Name Description
Symbol Stock symbol

 costCurves

6-345

Variable or Field Name Description
Size Shares in a transaction in percentage of

average daily trading volume
Shares Number of shares in the transaction
Dollars Dollar amount of the transaction
POV Percentage of volume to complete the

transaction
TradeTime Trade time to complete the transaction in

percentage of the day
Cost_BP Market-impact cost of the transaction in

basis points
Cost_DollarsPerShare Market-impact cost of the transaction in

dollars per share
Cost_Dollars Market-impact cost of the transaction in

dollars

Tips
• For details about the calculations, contact Kissell Research Group.

References
[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of

Trading. Vol. 3, Number 2, Summer 2008, pp. 29–37.

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[3] Kissell, Robert. “TCA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60–64.

[4] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[5] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

6 Functions — Alphabetical List

6-346

See Also
iStar | krg | marketImpact | portfolioCostCurves | timingRisk

Topics
“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23

Introduced in R2016a

 costCurves

6-347

iStar
Estimate instantaneous trading cost for order

Syntax
itc = iStar(k,trade)

Description
itc = iStar(k,trade) returns the instantaneous trading cost of an order using the
Kissell Research Group (KRG) transaction cost analysis object k and trade data trade. To
estimate the instantaneous trading cost, iStar uses the I-Star trading cost model on
page 6-351.

Examples

Estimate Instantaneous Trading Cost for Stocks

Retrieve the market impact data from the KRG FTP site. Connect to the FTP site using the
ftp function with a user name and password. Navigate to the MI_Parameters folder and
retrieve the market impact data in the MI_Encrypted_Parameters.csv file. miData
contains the encrypted market impact date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k.

k = krg(miData);

Load the example data from the file KRGExampleData.mat, which is included with the
Trading Toolbox.

6 Functions — Alphabetical List

6-348

load KRGExampleData

The variable TradeData appears in the MATLAB workspace.

TradeData contains these variables:

• Stock symbol
• Side
• Number of shares
• Size
• Stock price
• Average daily volume
• Volatility
• Percentage of volume

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Estimate instantaneous trading cost itc for each stock using the Kissell Research Group
transaction cost analysis object k. Display the first three instantaneous trading costs.

itc = iStar(k,TradeData);

itc(1:3)

ans =

 33.48
 317.58
 62.94

Instantaneous trading costs display in basis points.

Input Arguments
k — Transaction cost analysis
KRG object

Transaction cost analysis, specified as a KRG object created using krg.

 iStar

6-349

trade — Trade data
table | structure

Trade data that describes the stocks in the transaction, specified as a table or structure.
trade must contain these variable or field names.

Variable or Field Name Description
Symbol Stock symbol
Side Buy or sell side
Shares Number of shares in the transaction
Size Shares in the transaction, which is a

percentage of average daily trading volume
Price Stock price
ADV Average daily volume
Volatility Volatility
POV Percentage of volume

The trading cost varies with the trade strategy. iStar determines the trade strategy
using these variables in this order:

1 Percentage of volume
2 Trade time
3 Trade schedule

To change the trade strategy from percentage of volume to trade time, remove the
variable POV in the table and add the variable TradeTime with trade time data. To use
the trade schedule strategy, remove the variable TradeTime and add the
TradeSchedule and VolumeProfile variables.

If you specify size in the trade data, iStar uses the Size variable. Otherwise, iStar
uses the variables ADV and Shares to determine the size.

For example, to create trade data as a table, enter:

trade = table({'XYZ'},{'Buy'},9300,0.06,29.68,860000,0.27,0.17,...
 'VariableNames',{'Symbol' 'Side' 'Shares' 'Size' 'Price' ...
 'ADV' 'Volatility' 'POV'})

To create trade data as a structure, enter:

6 Functions — Alphabetical List

6-350

trade.Symbol = {'XYZ'};
trade.Side = {'Buy'};
trade.Shares = 9300;
trade.Size = 0.06;
trade.Price = 29.68;
trade.ADV = 860000;
trade.Volatility = 0.27;
trade.POV = 0.17;

These examples do not represent real market data.
Data Types: struct | table

Output Arguments
itc — Instantaneous trading cost
vector

Instantaneous trading cost, returned as a vector. The vector values correspond to the
instantaneous trading cost in basis points for each stock in trade.

Definitions

I-Star Trading Cost Model
The I-Star trading cost model (I-Star) estimates the instantaneous cost of an order. If a
market participant immediately releases the entire order to the market for execution,
they incur this cost. This cost also refers to the market participant cost accounting for
100% of the market volume over the execution period.

The I-Star model is

I* = a1 ⋅
Shares

ADV
a2
⋅ σa3 .

Shares are the number of shares to trade. ADV is the average daily volume of the stock. σ
is the price volatility. a1, a2, and a3 are the model parameters.

 iStar

6-351

Model Parameter Description
a1 Price sensitivity to order flow
a2 Order size shape
a3 Volatility shape

The general I-Star model that includes stock-specific factors is

I* = a1 ⋅
Shares

ADV
a2
⋅ σa3 ⋅ Pricea5 ⋅ Xk

ak .

Price is the stock price. a5 is the price shape model parameter. Xk is the stock-specific
factor such as market capitalization, beta, P/E ratio, and Debt/Equity ratio. This
formulation can include multiple stock-specific factors. ak is the corresponding shape
parameter for the stock-specific factor Xk.

Tips
• For details about the formula and calculations, contact the Kissell Research Group.

References
[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of

Trading. Vol. 3, Number 2, Summer 2008, pp. 29–37.

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[3] Kissell, Robert. “Creating Dynamic Pre-Trade Models: Beyond the Black Box.” Journal
of Trading. Vol. 6, Number 4, Fall 2011, pp. 8–15.

[4] Kissell, Robert. “TCA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60–64.

[5] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[6] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

6 Functions — Alphabetical List

6-352

See Also
krg | liquidityFactor | marketImpact | priceAppreciation | timingRisk

Topics
“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23

Introduced in R2016a

 iStar

6-353

liquidityFactor
Estimate and compare liquidation costs across stocks

Syntax
lf = liquidityFactor(k,trade)

Description
lf = liquidityFactor(k,trade) returns the ratio of liquidation costs due to
liquidity demand by stock for an equal investment value, or liquidity factor on page 6-356.
liquidityFactor uses the Kissell Research Group (KRG) transaction cost analysis
object k and trade data trade.

Examples

Determine Liquidity Factor for Stocks

Retrieve the market impact data from the KRG FTP site. Connect to the FTP site using the
ftp function with a user name and password. Navigate to the MI_Parameters folder and
retrieve the market impact data in the MI_Encrypted_Parameters.csv file. miData
contains the encrypted market impact date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k.

k = krg(miData);

Load the example data from the file KRGExampleData.mat, which is included with the
Trading Toolbox.

6 Functions — Alphabetical List

6-354

load KRGExampleData

The variable TradeData appears in the MATLAB workspace.

TradeData contains these variables:

• Stock symbol
• Stock price
• Average daily volume
• Volatility

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Determine liquidity factor lf for each stock using the Kissell Research Group transaction
cost analysis object k. Display the first three liquidity factor values.

lf = liquidityFactor(k,TradeData);

lf(1:3)

ans =

 0.30
 2.37
 0.35

lf returns the ratios for stock comparison due to liquidity demands.

Input Arguments
k — Transaction cost analysis
KRG object

Transaction cost analysis, specified as a KRG object created using krg.

trade — Trade data
table | structure

Trade data that describes the stocks in the transaction, specified as a table or structure.
trade must contain these variable or field names.

 liquidityFactor

6-355

Variable or Field Name Description
Symbol Stock symbol
Price Stock price
ADV Average daily volume
Volatility Volatility

Example: trade = table({'XYZ'},100.00,860000,0.27,'VariableNames',
{'Symbol' 'Price' 'ADV' 'Volatility'})

Example: trade =
struct('Symbol','XYZ','Price',100.00,'ADV',860000,'Volatility',0.27)

These examples do not represent real market data.
Data Types: struct | table

Output Arguments
lf — Liquidity factor
vector

Liquidity factor, returned as a vector. The vector values are ratios that compare the
liquidation costs due to liquidity demands across stocks in trade for the dollar value and
execution strategy.

Definitions

Liquidity Factor
The Liquidity Factor (LF) is a stock-specific measure of price sensitivity to investment
dollars.

LF provides investors with a fair and consistent comparison of expected liquidation costs
across stocks. LF incorporates stock-specific information to determine its sensitivity to
order flow and investment dollars. The LF metric shows the ratio of liquidation costs due
to liquidity demand by stock for an equal investment value in each stock. Market impact
relies on the order size or shares traded which vary from order to order. LF provides an

6 Functions — Alphabetical List

6-356

apples-to-apples comparison across financial instruments. Consider a stock I that has an
LF = 0.10 and a stock II that has an LF = 0.20. Stock II is twice as expensive to transact
for an equal dollar value. An investor buys or sells $1 million dollars of stock in stock I
and stock II utilizing the same execution strategy. The cost of stock II is twice as large as
stock I. The LF metric incorporates stock liquidity, volatility, and price to determine the
LF trading cost parameter.

The LF model is

LF = a1 ⋅
1

ADV
a2
⋅ σa3 ⋅ 1

Price
a2
⋅ Pricea5 .

σ is price volatility. ADV is the average daily volume of the stock. Price is the current
stock price in local currency. a1, a2, a3, and a5 are the model parameters.

Model Parameter Description
a1 Price sensitivity to order flow
a2 Order size shape
a3 Volatility shape
a5 Price shape

Tips
• For details about the formula and calculations, contact the Kissell Research Group.
• You can expand the LF model to include a stock-specific factor such as market

capitalization, beta, P/E ratio, and Debt/Equity ratio. In this case, Xk denotes the stock-
specific factor and ak denotes the corresponding shape parameter. For details about
implementing an expanded LF model, contact the Kissell Research Group.

References
[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of

Trading. Vol. 3, Number 2, Summer 2008, pp. 29–37.

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

 liquidityFactor

6-357

[3] Kissell, Robert. “TCA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60–64.

[4] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[5] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

See Also
iStar | krg | marketImpact | priceAppreciation | timingRisk

Topics
“Estimate Portfolio Liquidation Costs” on page 3-27

Introduced in R2016a

6 Functions — Alphabetical List

6-358

marketImpact
Estimate price movement due to order or trade

Syntax
mi = marketImpact(k,trade)

Description
mi = marketImpact(k,trade) returns the market impact on page 6-362 cost for
stocks using the Kissell Research Group (KRG) transaction cost analysis object k and
trade data trade.

Examples

Estimates Market-Impact Costs

Retrieve the market impact data from the KRG FTP site. Connect to the FTP site using the
ftp function with a user name and password. Navigate to the MI_Parameters folder and
retrieve the market impact data in the MI_Encrypted_Parameters.csv file. miData
contains the encrypted market impact date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k.

k = krg(miData);

Load the example data from the file KRGExampleData.mat, which is included with the
Trading Toolbox.

 marketImpact

6-359

load KRGExampleData

The variable TradeData appears in the MATLAB workspace.

TradeData contains these variables:

• Stock symbol
• Side
• Number of shares
• Size
• Stock price
• Average daily volume
• Volatility
• Percentage of volume

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Estimates market-impact cost mi for each stock using the Kissell Research Group
transaction cost analysis object k. Display the first three market-impact costs.

mi = marketImpact(k,TradeData);

mi(1:3)

ans =

 0.51
 96.86
 10.72

Market-impact costs display in basis points.

Input Arguments
k — Transaction cost analysis
KRG object

Transaction cost analysis, specified as a KRG object created using krg.

6 Functions — Alphabetical List

6-360

trade — Trade data
table | structure

Trade data that describes the stocks in the transaction, specified as a table or structure.
trade must contain these variable or field names.

Variable or Field Name Description
Symbol Stock symbol
Side Buy or sell side
Shares Number of shares in the transaction
Size Shares in the transaction, which is a

percentage of average daily trading volume
Price Stock price
ADV Average daily volume
Volatility Volatility
POV Percentage of volume

The trading cost varies with the trade strategy. marketImpact determines the trade
strategy using these variables in this order:

1 Percentage of volume
2 Trade time
3 Trade schedule

To change the trade strategy from percentage of volume to trade time, remove the
variable POV in the table and add the variable TradeTime with trade time data. To use
the trade schedule strategy, remove the variable TradeTime and add the
TradeSchedule and VolumeProfile variables.

If you specify size in the trade data, marketImpact uses the Size variable. Otherwise,
marketImpact uses the variables ADV and Shares to determine the size.

For example, to create trade data as a table, enter:

trade = table({'XYZ'},{'Buy'},9300,0.06,29.68,860000,0.27,0.17,...
 'VariableNames',{'Symbol' 'Side' 'Shares' 'Size' 'Price' ...
 'ADV' 'Volatility' 'POV'})

To create trade data as a structure, enter:

 marketImpact

6-361

trade.Symbol = {'XYZ'};
trade.Side = {'Buy'};
trade.Shares = 9300;
trade.Size = 0.06;
trade.Price = 29.68;
trade.ADV = 860000;
trade.Volatility = 0.27;
trade.POV = 0.17;

These examples do not represent real market data.
Data Types: struct | table

Output Arguments
mi — Market-impact cost
vector

Market-impact cost, returned as a vector. The vector values correspond to the market-
impact costs in basis points for each stock in trade.

Definitions

Market Impact
Market impact (MI) estimates the price movement in a stock caused by a particular trade
or order.

Market-impact cost always causes adverse price movement. Buy orders push the stock
price higher and sell orders push the stock price lower. Market-impact cost occurs for two
reasons: liquidity demands of the traders or investor and the information content of the
order. The liquidity demand of a buy order requires the buyer to provide the market a
premium to attract additional sells into the market. The liquidity demand of a sell order
causes the seller to offer the stock at a discount to attract additional buys into the market.
The information content of the trade typically signals to the market that the stock is
under- or overvalued. Buy orders tend to signal to the market that the stock is
undervalued thus causing an increase in price to correct for the mispricing. Sell orders
tend to signal to the market that the stock is overvalued thus causing a decrease in price
to correct for the mispricing. Market-impact cost depends on order size, volatility,

6 Functions — Alphabetical List

6-362

company characteristics, and prevailing market conditions over the trading horizon such
as liquidity and intraday trading patterns.

MI for an order that executes instantaneously is equal to the I-Star trading cost model (I-
Star). For details about I-Star, see iStar. When MI equals I-Star, the trading costs are
high and prices move adversely. Therefore, investors trade passively to reduce their cost.
Thus, they slice the order and trade over time such as minutes, hours, or possibly days.
marketImpact incorporates the trade strategy of the investors into the cost calculation.

The MI model is

MI = b1 ⋅ I* ⋅ POVa4 + 1− b1 ⋅ I* .

I* is I-Star. POV is the percentage of market volume, or participation fraction, of the
order. a4 and b1 are the model parameters.

Model Parameter Description
a4 Percentage of volume rate shape
b1 Percentage of temporary market impact.

Temporary impact is dependent upon the
trading strategy. Temporary impact occurs
because of the liquidity demands of the
investor.

1− b1 Percentage of permanent market impact.
Permanent impact is the unavoidable
impact cost. The order does not control the
permanent impact. Permanent impact
occurs because of the information content
of the trade.

Tips
• For details about the formula and calculations, contact the Kissell Research Group.

References
[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of

Trading. Vol. 3, Number 2, Summer 2008, pp. 29–37.

 marketImpact

6-363

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[3] Kissell, Robert. “Creating Dynamic Pre-Trade Models: Beyond the Black Box.” Journal
of Trading. Vol. 6, Number 4, Fall 2011, pp. 8–15.

[4] Kissell, Robert. “TCA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60–64.

[5] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[6] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

See Also
iStar | krg | liquidityFactor | priceAppreciation | timingRisk

Topics
“Analyze Trading Execution Results” on page 3-2
“Estimate Portfolio Liquidation Costs” on page 3-27
“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23
“Optimize Percentage of Volume Trading Strategy” on page 3-32
“Optimize Trade Time Trading Strategy” on page 3-36
“Optimize Trade Schedule Trading Strategy” on page 3-40

Introduced in R2016a

6 Functions — Alphabetical List

6-364

portfolioCostCurves
Estimate market-impact cost of order execution for portfolio

Syntax
pcc = portfolioCostCurves(k,portfolio,tradeQuantity,tqRange,
tradeStrategy,tsRange)

Description
pcc = portfolioCostCurves(k,portfolio,tradeQuantity,tqRange,
tradeStrategy,tsRange) returns the market-impact cost of order execution for a
portfolio using:

• Kissell Research Group (KRG) transaction cost analysis object k
• Portfolio data portfolio
• Trade quantity tradeQuantity with a range of values tqRange
• Trade strategy tradeStrategy with a range of values tsRange

Examples

Estimate Market-Impact Cost for a Portfolio Order

Retrieve the market impact data from the KRG FTP site. Connect to the FTP site using the
ftp function with a user name and password. Navigate to the MI_Parameters folder and
retrieve the market impact data in the MI_Encrypted_Parameters.csv file. miData
contains the encrypted market impact date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

 portfolioCostCurves

6-365

Create a Kissell Research Group transaction cost analysis object k.

k = krg(miData);

Load the example portfolio data from the file KRGExampleData.mat, which is included
with the Trading Toolbox.

load KRGExampleData

The variable PortfolioData appears in the MATLAB workspace.

PortfolioData contains these variables:

• Stock symbol
• Local price
• Price in a different currency if applicable
• Average daily volume
• Volatility
• Number of shares

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Estimate market-impact cost for an order execution on a portfolio of assets. Specify the
trade quantity as DollarValue. Specify the trade quantity range tqRange with
increments of $10,000,000. Start with a total portfolio value of $100,000,000 and end
with $500,000,000. Set the percentage of volume trading strategy POV. Specify the trade
strategy range tsRange with increments of 10% by starting with a percentage of volume
of 10% and ending with 40%.

tqRange = (100000000:10000000:500000000);
tsRange = (0.10:0.10:0.40);

pcc = portfolioCostCurves(k,PortfolioData,'DollarValue',tqRange,...
'POV',tsRange);

Display the first three rows of market-impact cost data.

pcc(1:3,:)

ans =

6 Functions — Alphabetical List

6-366

 Size Shares TradeValue AbsTradeValue POV TradeTime Cost_bp Cost_DollarsPerShare Cost_Dollars
 ____ __________ ____________ _____________ ____ _________ _______ ____________________ ____________

 0.02 5612057.03 100000000.00 328737579.09 0.10 0.18 38.74 0.07 387447.95
 0.02 5612057.03 100000000.00 328737579.09 0.20 0.08 61.18 0.11 611819.30
 0.02 5612057.03 100000000.00 328737579.09 0.30 0.05 80.07 0.14 800683.38

The market-impact cost data contains:

• Average trade size across all stocks in the portfolio
• Number of shares in the transaction
• Sum of traded value across all stocks in the portfolio
• Sum of absolute value of the trade value across all stocks in the portfolio
• Average execution percentage of volume to complete the number of shares
• Average trade time in percentage of the day to complete the number of shares
• Market-impact cost in basis points of local price
• Market-impact cost in dollars per share
• Market-impact cost in total dollar value

Display portfolio cost curves for percentage of volume rates: 10%, 20%, 30%, and 40%.

figure
size10 = pcc.Size(1:4:end)*100;
size20 = pcc.Size(2:4:end)*100;
size30 = pcc.Size(3:4:end)*100;
size40 = pcc.Size(4:4:end)*100;
cost10 = pcc.Cost_bp(1:4:end);
cost20 = pcc.Cost_bp(2:4:end);
cost30 = pcc.Cost_bp(3:4:end);
cost40 = pcc.Cost_bp(4:4:end);
plot(size10,cost10,size20,cost20,size30,cost30,size40,cost40)
grid on
axis([2 11 25 200])
xlabel({'Size','(%ADV)'})
ylabel({'Cost','(bps)'})
legend('POV = 10%','POV = 20%','POV = 30%','POV = 40%',...
'Location','northwest')
title('Portfolio Costs')
a = gca;
a.XAxis.TickLabelFormat = '%g%%';

 portfolioCostCurves

6-367

6 Functions — Alphabetical List

6-368

This figure demonstrates using portfolio costs to construct the portfolio and manage
portfolio contents. By analyzing portfolio costs, you can determine the optimal portfolio
size.

Input Arguments
k — Transaction cost analysis
KRG object

Transaction cost analysis, specified as a KRG object created using krg.

portfolio — Portfolio data
table | structure

Portfolio data that describes the stocks in the portfolio, specified as a table or structure.
portfolio must contain these variable or field names.

Variable or Field Name Description
Symbol Stock symbol.
Price_Local Local price.
Price_Currency Price, specified as the stock price with a

different currency if the stock trades
outside the United States. If the stock
trades in the United States, the value
equals the local price.

ADV Average daily volume.
Volatility Volatility.
Shares Number of shares.

The number of symbols in the portfolio data must match the number of values for each
market-impact parameter in the miData property of k. For details about the market-
impact parameters, contact the Kissell Research Group.
Example: portfolio =
table({'XYZ'},100.00,100.00,860000,0.27,550,'VariableNames',
{'Symbol' 'Price_Local' 'Price_Currency' 'ADV' 'Volatility'
'Shares'})

 portfolioCostCurves

6-369

Example: portfolio =
struct('Symbol','XYZ','Price_Local',100.00,'Price_Currency',100.00,'
ADV',860000,'Volatility',0.27,'Shares',550)

These examples do not represent real market data.
Data Types: struct | table

tradeQuantity — Trade quantity
'DollarValue' | 'PercentValue'

Trade quantity, specified as one of these values.

Value Trade Quantity Description
'DollarValue' Total dollar value of the portfolio
'PercentValue' Percentage of the total dollar value of the

portfolio

tqRange — Trade quantity range
vector

Trade quantity range, specified as a vector. portfolioCostCurves uses these values
with the trade strategy range values to estimate market-impact costs for different
quantities and strategies.
Example: 'Size',(0.01:0.01:1) specifies a trade quantity range with increments of
0.01 starting from 0.01 and ending at one
Data Types: double

tradeStrategy — Trade strategy
'POV' | 'TradeTime'

Trade strategy, specified as one of these values.

Values Trade Strategy Name
'POV' Percentage of volume
'TradeTime' Trade time in percentage of the day

tsRange — Trade strategy range
vector

6 Functions — Alphabetical List

6-370

Trade strategy range, specified as a vector. portfolioCostCurves uses these values
with the trade quantity range values to estimate market-impact costs for different
quantities and strategies.
Example: 'POV',(0.05:0.05:0.5) specifies a trade strategy range with increments of
0.05 starting from 0.05 and ending at 0.5
Data Types: double

Output Arguments
pcc — Portfolio cost curves
table | structure

Portfolio cost curves, returned as a table or structure with these variable names or fields.

Variable or Field Name Description
Size Average trade size across all stocks in the

portfolio.
Shares Number of shares in the transaction.
TradeValue Trade value, or the total dollar value of the

stock position in the portfolio adjusted for
side. Long/Buy positions have a positive
trade value and Short/Sell positions have a
negative trade value.

AbsTradeValue Sum of absolute value of the trade value
across all stocks in the portfolio.

POV Average execution percentage of volume to
complete the number of shares.

TradeTime Average trade time in percentage of the day
to complete the number of shares.

Cost_bp Market-impact cost in basis points of local
price.

Cost_DollarsPerShare Market-impact cost in dollars per share.
Cost_Dollars Market-impact cost in total dollar value.

 portfolioCostCurves

6-371

Tips
• To test multiple portfolio transactions, you can use different ranges. You can change

the percentage of shares in the transaction or use a different trade strategy. For
details, see “Input Arguments” on page 6-369.

• For details about the calculations, contact Kissell Research Group.

References
[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of

Trading. Vol. 3, Number 2, Summer 2008, pp. 29–37.

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[3] Kissell, Robert. “TCA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60–64.

[4] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[5] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

See Also
costCurves | iStar | krg | marketImpact | timingRisk

Topics
“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23

Introduced in R2016a

6 Functions — Alphabetical List

6-372

priceAppreciation
Estimate trading cost due to natural price movement

Syntax
alpha = priceAppreciation(k,trade)

Description
alpha = priceAppreciation(k,trade) returns the trading cost due to the natural
price movement of a stock, or price appreciation on page 6-376. priceAppreciation
uses the Kissell Research Group (KRG) transaction cost object k and trade data trade.

Examples

Estimate Alpha

Retrieve the market impact data from the KRG FTP site. Connect to the FTP site using the
ftp function with a user name and password. Navigate to the MI_Parameters folder and
retrieve the market impact data in the MI_Encrypted_Parameters.csv file. miData
contains the encrypted market impact date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k.

k = krg(miData);

Load the example data from the file KRGExampleData.mat, which is included with the
Trading Toolbox.

 priceAppreciation

6-373

load KRGExampleData

The variable TradeData appears in the MATLAB workspace.

TradeData contains these variables:

• Shares in the transaction, which is a percentage of average daily trading volume
• Number of shares
• Average daily volume
• Percentage of volume
• Trade time in percentage of the day
• Volatility
• Stock price
• Alpha estimate

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Estimate alpha using the Kissell Research Group transaction cost analysis object k.
Display the first three alphas.

alpha = priceAppreciation(k,TradeData);

alpha(1:3)

ans =

 -9.49
 8.47
 0.93

Alphas display in basis points.

Input Arguments
k — Transaction cost analysis
KRG object

Transaction cost analysis, specified as a KRG object created using krg.

6 Functions — Alphabetical List

6-374

trade — Trade data
table | structure

Trade data that describes the stocks in the transaction, specified as a table or structure.
trade must contain these variable or field names.

Variable or Field Name Description
Size Shares in the transaction, which is a

percentage of average daily trading volume
Shares Number of shares
ADV Average daily volume
POV Percentage of volume
TradeTime Trade time in percentage of the day
Volatility Volatility
Price Stock price
Alpha_bp Alpha estimate in basis points

The trading cost varies with the trade strategy. priceAppreciation determines the
trade strategy using these variables in this order:

1 Percentage of volume
2 Trade time
3 Trade schedule

To change the trade strategy from percentage of volume to trade time, remove the
variable POV in the table and add the variable TradeTime with trade time data. To use
the trade schedule strategy, remove the variable TradeTime and add the
TradeSchedule and VolumeProfile variables.

If you specify size in the trade data, priceAppreciation uses the Size variable.
Otherwise, priceAppreciation uses the variables ADV and Shares to determine the
size.
Example: trade =
table(0.01,9300,860000,0.17,0.40,0.27,29.68,3,'VariableNames',
{'Size' 'Shares' 'ADV' 'POV' 'TradeTime' 'Volatility' 'Price'
'Alpha_bp'})

 priceAppreciation

6-375

Example: trade =
struct('Size',0.01,'Shares',9300,'ADV',860000,'POV',0.17,'TradeTime'
,0.40,'Volatility',0.27,'Price',29.68,'Alpha_bp',3)

These examples do not represent real market data.
Data Types: struct | table

Output Arguments
alpha — Alpha
vector

Alpha, returned as a vector. The units of alpha, or the natural price movement of the
stock, are basis points.

Definitions
Price Appreciation
Price appreciation (PA) estimates the trading cost due to the natural price movement of a
stock.

The natural price movement commonly refers to expected return, alpha, price trend, drift,
or momentum. This movement represents how the stock moves in a market without any
uncertainty. PA represents the trading cost due to the underlying trading strategy. For
example, buying passively in a rising market or selling passively in a falling market
causes the fund to incur higher costs due to market movement. Conversely, buying in a
falling market or selling in a rising market causes the fund to incur lower costs due to
transacting at the better prices. PA is based on the alpha estimate you specify in the trade
data. Funds and managers heavily guard their alpha estimates and expected returns.
These expectations are highly proprietary and valued. This function lets you input alpha
estimates directly into the model running on your desktop that prevents information
leakage.

The PA model is represented as a linear trend. The PA model is

PA = 0.5 ⋅ Alpha_bp ⋅ Shares
ADV ⋅ 1− POV

POV .

6 Functions — Alphabetical List

6-376

Shares are the number of shares to trade. ADV is the average daily volume of a stock.
POV is the percent of market volume, or participation fraction, for the order. Alpha_bp is
the alpha estimate for the day in basis points. A positive value for the alpha estimate
indicates adverse price movement for the order. A negative value for the alpha estimate
indicates favorable price movement.

Tips
• For details about the formula and calculations, contact the Kissell Research Group.

References
[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of

Trading. Vol. 3, Number 2, Summer 2008, pp. 29–37.

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[3] Kissell, Robert. “TCA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60–64.

[4] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[5] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

See Also
iStar | krg | liquidityFactor | marketImpact | timingRisk

Topics
“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23
“Optimize Percentage of Volume Trading Strategy” on page 3-32
“Optimize Trade Time Trading Strategy” on page 3-36
“Optimize Trade Schedule Trading Strategy” on page 3-40

 priceAppreciation

6-377

Introduced in R2016a

6 Functions — Alphabetical List

6-378

timingRisk
Estimate uncertainty of market impact cost

Syntax
tr = timingRisk(k,trade)

Description
tr = timingRisk(k,trade) returns the uncertainty of the market impact cost
estimate, or timing risk on page 6-382. timingRisk uses the Kissell Research Group
(KRG) transaction cost analysis object k and trade data trade.

Examples

Estimate Timing Risk for Stocks

Retrieve the market impact data from the KRG FTP site. Connect to the FTP site using the
ftp function with a user name and password. Navigate to the MI_Parameters folder and
retrieve the market impact data in the MI_Encrypted_Parameters.csv file. miData
contains the encrypted market impact date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
mget(f,'MI_Encrypted_Parameters.csv');

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
 ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction cost analysis object k.

k = krg(miData);

Load the example data from the file KRGExampleData.mat, which is included with the
Trading Toolbox.

 timingRisk

6-379

load KRGExampleData

The variable TradeData appears in the MATLAB workspace.

TradeData contains these variables:

• Stock symbol
• Side
• Number of shares
• Size
• Stock price
• Average daily volume
• Volatility
• Percentage of volume

For a description of the example data, see “Kissell Research Group Data Sets” on page 3-
9.

Estimate timing risk tr for each stock using the Kissell Research Group transaction cost
analysis object k. Display the first three timing risk values.

tr = timingRisk(k,TradeData);

tr(1:3)

ans =

 159.05
 242.37
 62.88

Timing risk trading costs display in basis points.

Input Arguments
k — Transaction cost analysis
KRG object

Transaction cost analysis, specified as a KRG object created using krg.

6 Functions — Alphabetical List

6-380

trade — Trade data
table | structure

Trade data that describes the stocks in the transaction, specified as a table or structure.
trade must contain these variable or field names.

Variable or Field Name Description
Symbol Stock symbol
Side Buy or sell side
Shares Number of shares in the transaction
Size Shares in the transaction, which is a

percentage of average daily trading volume
Price Stock price
ADV Average daily volume
Volatility Volatility
POV Percentage of volume

The trading cost varies with the trade strategy. timingRisk determines the trade
strategy using these variables in this order:

1 Percentage of volume
2 Trade time
3 Trade schedule

To change the trade strategy from percentage of volume to trade time, remove the
variable POV in the table and add the variable TradeTime with trade time data. To use
the trade schedule strategy, remove the variable TradeTime and add the
TradeSchedule and VolumeProfile variables.

If you specify size in the trade data, timingRisk uses the Size variable. Otherwise,
timingRisk uses the variables ADV and Shares to determine the size.

For example, to create trade data as a table, enter:

trade = table({'XYZ'},{'Buy'},9300,0.06,29.68,860000,0.27,0.17,...
 'VariableNames',{'Symbol' 'Side' 'Shares' 'Size' 'Price' ...
 'ADV' 'Volatility' 'POV'})

To create trade data as a structure, enter:

 timingRisk

6-381

trade.Symbol = {'XYZ'};
trade.Side = {'Buy'};
trade.Shares = 9300;
trade.Size = 0.06;
trade.Price = 29.68;
trade.ADV = 860000;
trade.Volatility = 0.27;
trade.POV = 0.17;

These examples do not represent real market data.
Data Types: struct | table

Output Arguments
tr — Timing risk
vector

Timing risk, returned as a vector. The vector values correspond to the timing risk in basis
points for each stock in trade.

Definitions

Timing Risk
Timing risk (TR) estimates the uncertainty surrounding the estimated transaction cost.

Price volatility and liquidity risk creates uncertainty. Price volatility causes the price to be
either higher or lower than expected due to factors independent of the order. Liquidity
risk causes the market impact cost to be either higher or lower than estimated due to
market volumes. TR is dependent upon volumes, intraday trading patterns, and market
impact resulting from other market participants. The TR model is

TR = σ ⋅ 1
3 ⋅

1
250 ⋅

Shares
ADV ⋅ 1− POV

POV ⋅ 104 .

σ is price volatility. 250 is the number of trading days in the year. Shares are the number
of shares to trade. ADV is the average daily volume of the stock. POV is the percentage of
market volume, or participation fraction, of the order.

6 Functions — Alphabetical List

6-382

Tips
• For details about the formula and calculations, contact the Kissell Research Group.

References
[1] Kissell, Robert. “A Practical Framework for Transaction Cost Analysis.” Journal of

Trading. Vol. 3, Number 2, Summer 2008, pp. 29–37.

[2] Kissell, Robert. “Algorithmic Trading Strategies.” Ph.D. Thesis. Fordham University,
May 2006.

[3] Kissell, Robert. “TCA in the Investment Process: An Overview.” Journal of Index
Investing. Vol. 2, Number 1, Summer 2011, pp. 60–64.

[4] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management.
Cambridge, MA: Elsevier/Academic Press, 2013.

[5] Glantz, Morton, and Robert Kissell. Multi-Asset Risk Modeling. Cambridge, MA:
Elsevier/Academic Press, 2013.

[6] Kissell, Robert, and Morton Glantz. Optimal Trading Strategies. New York, NY:
AMACOM, Inc., 2003.

See Also
iStar | krg | liquidityFactor | marketImpact | priceAppreciation

Topics
“Analyze Trading Execution Results” on page 3-2
“Estimate Portfolio Liquidation Costs” on page 3-27
“Conduct Sensitivity Analysis to Estimate Trading Costs” on page 3-23
“Optimize Percentage of Volume Trading Strategy” on page 3-32
“Optimize Trade Time Trading Strategy” on page 3-36
“Optimize Trade Schedule Trading Strategy” on page 3-40

Introduced in R2016a

 timingRisk

6-383

wind
WDS connection

Description
The wind function creates a wind object, which represents a Wind Data Feed Services
(WDS) connection. First, open and log in to the Wind Financial Terminal, then create the
wind object. You can use the object functions to retrieve current, historical, intraday, and
real-time data from the Wind Financial Terminal. Also, you can create and delete orders
and query order and account information in the Wind Financial Terminal. For details
about WDS or the Wind Financial Terminal, see Wind Data Feed Services (WDS) .

Creation

Syntax
c = wind

Description
c = wind creates a WDS connection.

Object Functions

WDS Connection
close Close WDS connection

WDS Data Retrieval
getdata Current WDS data
history Historical WDS data

6 Functions — Alphabetical List

6-384

http://www.wind.com.cn/en/product/Wind.DataFeed.html

timeseries Intraday tick WDS data
realtime Snapshot and subscription WDS data
stop Cancel subscription WDS data request

WDS Order Management
createorder Create WDS order
deleteorder Cancel WDS order
query Query WDS account and order information
tradelogin Log in to WDS order management system
tradelogout Log out from WDS order management system

Examples

Retrieve Current WDS Data for Security

Using a WDS connection, retrieve current data for a single security and display the data.
Then close the connection.

Create a WDS connection.

c = wind;

Format output data for currency.

format bank

Using the 0001.HK security, retrieve the current high and low prices.

s = '0001.HK';
f = ["high","low"];
d = getdata(c,s,f)

d=1×2 table
 HIGH LOW
 _____ _____

 0001.HK 99.50 98.00

d is a table with one row for the single security. Each variable in the table corresponds to
each specified field.

 wind

6-385

Close the WDS connection.

close(c)

See Also

Topics
“Decide to Buy Shares Using Current and Historical WDS Data” on page 5-2
“Create Order Using Real-Time Snapshot WDS Data” on page 5-4

External Websites
Wind Data Feed Services (WDS)

Introduced in R2018a

6 Functions — Alphabetical List

6-386

http://www.wind.com.cn/en/product/Wind.DataFeed.html

close
Close WDS connection

Syntax
close(c)

Description
close(c) closes the Wind Data Feed Services (WDS) connection.

Examples

Retrieve Current WDS Data for Security

Using a WDS connection, retrieve current data for a single security and display the data.
Then close the connection.

Create a WDS connection.

c = wind;

Format output data for currency.

format bank

Using the 0001.HK security, retrieve the current high and low prices.

s = '0001.HK';
f = ["high","low"];
d = getdata(c,s,f)

d=1×2 table
 HIGH LOW
 _____ _____

 close

6-387

 0001.HK 99.50 98.00

d is a table with one row for the single security. Each variable in the table corresponds to
each specified field.

Close the WDS connection.

close(c)

Input Arguments
c — WDS connection
connection object

WDS connection, specified as a connection object created with the wind function.

See Also
createorder | getdata | history | realtime | timeseries | wind

Topics
“Decide to Buy Shares Using Current and Historical WDS Data” on page 5-2
“Create Order Using Real-Time Snapshot WDS Data” on page 5-4

External Websites
Wind Data Feed Services (WDS)

Introduced in R2018a

6 Functions — Alphabetical List

6-388

http://www.wind.com.cn/en/product/Wind.DataFeed.html

createorder
Create WDS order

Syntax
d = createorder(c,s,direction,price,quantity)
d = createorder(c,s,direction,price,quantity,Name,Value)
[d,e] = createorder(___)

Description
d = createorder(c,s,direction,price,quantity) returns order information
after sending an order to the Wind Data Feed Services (WDS) order management system
using the WDS connection. Specify the security, trade side, order price, and quantity of
shares for the order.

d = createorder(c,s,direction,price,quantity,Name,Value) specifies
additional options using one or more name-value pair arguments. For example,
'TradePassword',"abcdefghi" specifies the password for the WDS order
management system.

[d,e] = createorder(___) also returns the WDS error identifier using any of the
input argument combinations in the previous syntaxes. For troubleshooting, contact Wind
Information Co., Ltd.

Examples

Create Order for Security

Using a WDS connection, log in to the order management system and create a buy order
of a single security.

Create a WDS connection.

 createorder

6-389

c = wind;

Log in to the WDS order management system using the WDS connection. Specify the
broker, branch, user name, password, and account type.

broker = "0000";
branch = "0";
capitalaccount = "1234567891011";
password = "abcdefghi";
accttype = "SHSZ";
dlogin = tradelogin(c,broker,branch, ...
 capitalaccount,password,accttype);

Create a buy order of 100 shares of the 600000.SH security using the WDS connection.
Buy shares with the order price 12.0, specified in the CNY currency.

s = '600000.SH';
direction = 'buy';
price = '12.0';
quantity = '100';
d = createorder(c,s,direction,price,quantity)

d =

 1×8 table

 RequestID SecurityCode TradeSide OrderPrice OrderVolume LogonID ErrorCode ErrorMsg
 _________ ____________ _________ __________ ___________ _______ _________ _____________

 20 '600000.sh' 'BUY' '12.0' '100' '1' 0 'Sending ...'

d is a table with these variables:

• Request identifier
• Security code
• Trade side
• Order price
• Order volume
• Login identifier
• Error code

6 Functions — Alphabetical List

6-390

• Error message

Query for the order status of the executed order and display the status. The order status
'Normal' indicates a successful order execution.

d = query(c,'Order');
d.OrderStatus

d =

 'Normal'

This result assumes that the WDS order management system contains only one valid
order execution.

Log out from the WDS order management system using the login identifier returned by
the tradelogin function.

logonid = dlogin.LogonID;
d = tradelogout(c,logonid);

Close the WDS connection.

close(c)

Create Order for Security Using Credentials

Using a WDS connection, log in to the order management system and create a buy order
of a single security. Use name-value pair arguments to specify the login identifier and
password.

Create a WDS connection.

c = wind;

Log in to the WDS order management system using the WDS connection. Specify the
broker, branch, user name, password, and account type.

broker = "0000";
branch = "0";
capitalaccount = "1234567891011";
password = "abcdefghi";
accttype = "SHSZ";

 createorder

6-391

dlogin = tradelogin(c,broker,branch, ...
 capitalaccount,password,accttype);

Create a buy order of 100 shares of the 600000.SH security using the WDS connection.
Buy shares with the order price 12.0, specified in the CNY currency. Use the 'LogonID'
and 'TradePassword' name-value pair arguments to specify the login identifier and
password.

s = '600000.SH';
direction = 'buy';
price = '12.0';
quantity = '100';
logonid = '1';
password = "abcdefghi";
d = createorder(c,s,direction,price,quantity, ...
 'LogonID',logonid,'TradePassword',password)

d =

 1×8 table

 RequestID SecurityCode TradeSide OrderPrice OrderVolume LogonID ErrorCode ErrorMsg
 _________ ____________ _________ __________ ___________ _______ _________ _____________

 20 '600000.sh' 'BUY' '12.0' '100' '1' 0 'Sending ...'

d is a table with these variables:

• Request identifier
• Security code
• Trade side
• Order price
• Order volume
• Login identifier
• Error code
• Error message

Query for the order status of the executed order and display the status. The order status
'Normal' indicates a successful order execution.

6 Functions — Alphabetical List

6-392

d = query(c,'Order');
d.OrderStatus

This result assumes that the WDS order management system contains only one valid
order execution.

d =

 'Normal'

Log out from the WDS order management system using the login identifier returned by
the tradelogin function.

logonid = dlogin.LogonID;
d = tradelogout(c,logonid);

Close the WDS connection.

close(c)

Input Arguments
c — WDS connection
connection object

WDS connection, specified as a connection object created with the wind function.

s — Security
character vector | string scalar

Security, specified as a character vector or string scalar.
Example: '0001.HK'
Data Types: char | string

direction — Trade side
'Buy' | 'Short' | 'Cover' | ...

Trade side of the order, specified as one of these values:

• 'Buy'

 createorder

6-393

• 'BuyCollateral'
• 'Cover'
• 'CoverCovered'
• 'CoverToday'
• 'Merge'
• 'Redemption'
• 'Sell'
• 'SellCollateral'
• 'SellToday'
• 'Short'
• 'ShortCovered'
• 'Split'
• 'Subscription'

The values for the direction input argument depend on the instrument type.

Instrument Type Values
Stocks 'Buy' or 'Sell' — Buy or sell stocks
Futures and options • 'Buy' — Buy long

• 'Sell' — Sell long
• 'Short' — Buy short
• 'Cover' — Sell short

SHF futures only • 'Buy' — Buy long
• 'Sell' — Sell long position yesterday or before
• 'SellToday' — Sell long position today
• 'Short' — Buy short
• 'Cover' — Sell short position yesterday or before
• 'CoverToday' — Sell short position today

6 Functions — Alphabetical List

6-394

Instrument Type Values
SHO options only • 'Buy' — Buy long

• 'Sell' — Sell long
• 'Short' — Buy short
• 'ShortCovered' — Buy short with frozen underlying stock

(not frozen margin)
• 'Cover' — Sell short
• 'CoverCovered' — Sell short covered

Short margin • 'Buy' — Margin purchase
• 'Sell' — Repayment
• 'Short' — Short sale
• 'Cover' — Return stock
• 'BuyCollateral' — Buy collateral
• 'SellCollateral' — Sell collateral

Funds and split-
capital funds

• 'Buy' — Buy fund in floor trading
• 'Sell' — Sell fund in floor trading
• 'Subscription' — Buy fund in OTC
• 'Redemption' — Sell fund in OTC

Split-capital funds
only

• 'Merge' — SCT merge to Fund of Funds
• 'Split' — Fund of Funds split to SCT

price — Order price
character vector | string scalar

Order price, specified as a character vector or string scalar. Specify the price of the order
in the CNY currency.
Example: '12.0'
Data Types: char | string

quantity — Order quantity
character vector | string scalar

 createorder

6-395

Order quantity, specified as a character vector or string scalar. Specify the number of
shares for the order transaction.
Example: '100'
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: d =
createorder(c,'600000.SH','buy','12.0','100','OrderType','LMT')
returns order information after sending a limit order of the 600000.SH security to the
WDS order management system. This order buys 100 shares of the security with an order
price of 12, specified in CNY currency.

OrderType — Order type
'LMT' | 'B5TC' | 'B5TL'

Order type, specified as the comma-separated pair consisting of 'OrderType' and one of
these values.

Value Description
'LMT' Limit
'BOC' Best of counterparty
'BOP' Best of party
'ITC' Immediately then cancel
'B5TC' Best 5 then cancel
'FOK' Fill or kill
'B5TL' Best 5 then limit

For details about these values, contact Wind Information Co., Ltd.

HedgeType — Hedge type
'SPEC' | 'HEDG'

6 Functions — Alphabetical List

6-396

Hedge type, specified as the comma-separated pair consisting of 'HedgeType' and
'SPEC' for speculation or 'HEDG' for hedging (when trading futures).

For details about these values, contact Wind Information Co., Ltd.

LogonID — Login identifier
character vector | string scalar

Login identifier, specified as the comma-separated pair consisting of 'LogonID' and a
character vector or string scalar. Set the value of the 'LogonID' name-value pair
argument by using the LogonID variable in the d output argument of the tradelogin
function.
Example: '1'
Data Types: char | string

TradePassword — Account password
character vector | string scalar

Account password, specified as the comma-separated pair consisting of
'TradePassword' and a character vector or string scalar. For credentials, contact Wind
Information Co., Ltd.
Example: "abcdefghi"
Data Types: char | string

FundsType — Fund type
'ETF'

Fund type, specified as the comma-separated pair consisting of 'FundsType' and 'ETF'.

For details about this value, contact Wind Information Co., Ltd.

PortfolioNo — Portfolio number
character vector | string scalar

Portfolio number, specified as the comma-separated pair consisting of 'PortfolioNo'
and a character vector or string scalar.
Example: '3'
Data Types: char | string

 createorder

6-397

Output Arguments
d — Order information
table

Order information, returned as a table. The variables in the table depend on the specified
order.

For details about the variables in the table, contact Wind Information Co., Ltd.

e — WDS error identifier
numeric scalar

WDS error identifier, returned as a numeric scalar. The value 0 indicates a successful
execution of the createorder function. Otherwise, for details about the error, contact
Wind Information Co., Ltd.

See Also
close | query | tradelogin | tradelogout | wind

Topics
“Create Order Using Real-Time Snapshot WDS Data” on page 5-4

External Websites
Wind Data Feed Services (WDS)

Introduced in R2018a

6 Functions — Alphabetical List

6-398

http://www.wind.com.cn/en/product/Wind.DataFeed.html

deleteorder
Cancel WDS order

Syntax
d = deleteorder(c,orderno)
d = deleteorder(c,orderno,Name,Value)
[d,e] = deleteorder(___)

Description
d = deleteorder(c,orderno) cancels a Wind Data Feed Services (WDS) order using
the WDS connection.

d = deleteorder(c,orderno,Name,Value) specifies additional options using one or
more name-value pair arguments. For example, 'TradePassword',"abcdefghi"
specifies the password for the WDS order management system.

[d,e] = deleteorder(___) also returns the WDS error identifier using any of the
input argument combinations in the previous syntaxes. For troubleshooting, contact Wind
Information Co., Ltd.

Examples

Delete Order

Using a WDS connection, log in to the order management system, create a buy order for a
single security, and delete the order.

Create a WDS connection.

c = wind;

 deleteorder

6-399

Log in to the WDS order management system using the WDS connection. Specify the
broker, branch, user name, password, and account type.

broker = "0000";
branch = "0";
capitalaccount = "1234567891011";
password = "abcdefghi";
accttype = "SHSZ";
dlogin = tradelogin(c,broker,branch, ...
 capitalaccount,password,accttype);

Create a buy order of 100 shares of the 600000.SH security using the WDS connection.
Buy shares with the order price 12.0, specified in the CNY currency.

s = '600000.SH';
direction = 'buy';
price = '12.0';
quantity = '100';
d = createorder(c,s,direction,price,quantity);

Query for the order number of the executed order and display the number.

d = query(c,'Order');
orderno = d.OrderNumber

orderno =

 '12'

This result assumes that the WDS order management system contains only one valid
order execution.

Delete the order using the WDS connection and the order number.

d = deleteorder(c,orderno)

d =

 1×3 table

 OrderNumber ErrorCode ErrorMsg
 ___________ _________ _____________

 '12' 0 'Sending ...'

d is a table that contains these variables:

6 Functions — Alphabetical List

6-400

• Order number
• Error code
• Error message

Log out from the WDS order management system using the login identifier returned by
the tradelogin function.

logonid = dlogin.LogonID;
d = tradelogout(c,logonid);

Close the WDS connection.

close(c)

Delete Order Using Password

Using a WDS connection, log in to the order management system, create a buy order of a
single security, and delete the order by using the account password.

Create a WDS connection.

c = wind;

Log in to the WDS order management system using the WDS connection. Specify the
broker, branch, user name, password, and account type.

broker = "0000";
branch = "0";
capitalaccount = "1234567891011";
password = "abcdefghi";
accttype = "SHSZ";
dlogin = tradelogin(c,broker,branch, ...
 capitalaccount,password,accttype);

Create a buy order of 100 shares of the 600000.SH security using the WDS connection.
Buy shares with the order price 12.0, specified in the CNY currency.

s = '600000.SH';
direction = 'buy';
price = '12.0';
quantity = '100';
d = createorder(c,s,direction,price,quantity);

 deleteorder

6-401

Query for the order number of the executed order and display the number.

d = query(c,'Order');
orderno = d.OrderNumber

orderno =

 '12'

This result assumes that the WDS order management system contains only one valid
order execution.

Delete the order using the WDS connection and the order number. Specify the account
password using the 'TradePassword' name-value pair argument.

d = deleteorder(c,orderno,'TradePassword',password)

d =

 1×3 table

 OrderNumber ErrorCode ErrorMsg
 ___________ _________ _____________

 '12' 0 'Sending ...'

d is a table that contains these variables:

• Order number
• Error code
• Error message

Log out from the WDS order management system using the login identifier returned by
the tradelogin function.

logonid = dlogin.LogonID;
d = tradelogout(c,logonid);

Close the WDS connection.

6 Functions — Alphabetical List

6-402

close(c)

Input Arguments
c — WDS connection
connection object

WDS connection, specified as a connection object created with the wind function.

orderno — Order number
character vector | string scalar

Order number, specified as a character vector or string scalar. To find the order number,
use the query function with the query term 'Order'.
Example: '12'
Data Types: char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: d =
deleteorder(c,'12','LogonID','1','TradePassword',"abcdefghi") cancels
the order, identified by the order number '12', in the WDS order management system
using the login identifier '1' and the account password "abcdefghi".

MarketType — Security market identifier
'SZ' | 'SH' | 'OC' | ...

Security market identifier, specified as one of these values.

Value Description
'SZ' Shenzhen Stock Exchange
'SH' Shanghai Stock Exchange

 deleteorder

6-403

Value Description
'OC' National Equities Exchange and Quotations
'HK' Hong Kong Stock Exchange
'CZC' Zhengzhou Commodity Exchange
'SHF' Shanghai Futures Exchange
'DCE' Dalian Commodity Exchange
'CFE' China Financial Futures Exchange

LogonID — Login identifier
character vector | string scalar

Login identifier, specified as the comma-separated pair consisting of 'LogonID' and a
character vector or string scalar. Set the value of the 'LogonID' name-value pair
argument by using the LogonID variable in the d output argument of the tradelogin
function.
Example: '1'
Data Types: char | string

TradePassword — Account password
character vector | string scalar

Account password, specified as the comma-separated pair consisting of
'TradePassword' and a character vector or string scalar. For credentials, contact Wind
Information Co., Ltd.
Example: "abcdefghi"
Data Types: char | string

OrderPrice — Order price
character vector | string scalar

Order price, specified as a character vector or string scalar. Specify the order price in the
CNY currency.

For HK only, use the 'OrderPrice' name-value pair argument to change the price of an
existing order. If the 'OrderPrice' and 'OrderVolume' name-value pair arguments
are not specified, then the Wind Financial Terminal cancels the order.

6 Functions — Alphabetical List

6-404

Example: '30'
Data Types: char | string

OrderVolume — Order volume
character vector | string scalar

Order volume, specified as a character vector or string scalar.

For HK only, use the 'OrderVolume' name-value pair argument to change the volume of
an existing order. If the 'OrderPrice' and 'OrderVolume' name-value pair arguments
are not specified, then the Wind Financial Terminal cancels the order.
Example: '100'
Data Types: char | string

Output Arguments
d — Deletion information
table

Deletion information, returned as a table with these variables:

• Order number
• Error code
• Error message

e — WDS error identifier
numeric scalar

WDS error identifier, returned as a numeric scalar. The value 0 indicates a successful
execution of the deleteorder function. Otherwise, for details about the error, contact
Wind Information Co., Ltd.

See Also
close | createorder | query | tradelogin | tradelogout | wind

 deleteorder

6-405

Topics
“Create Order Using Real-Time Snapshot WDS Data” on page 5-4

External Websites
Wind Data Feed Services (WDS)

Introduced in R2018a

6 Functions — Alphabetical List

6-406

http://www.wind.com.cn/en/product/Wind.DataFeed.html

getdata
Current WDS data

Syntax
d = getdata(c,s,f)
d = getdata(c,s,f,Name,Value)
[d,e] = getdata(___)

Description
d = getdata(c,s,f) returns the current Wind Data Feed Services (WDS) market data
for the specified securities and fields using the WDS connection.

d = getdata(c,s,f,Name,Value) specifies additional options using one or more
name-value pair arguments. For example, 'TradeDate',datetime('today') returns
market data for the current day.

[d,e] = getdata(___) also returns the WDS error identifier using any of the input
argument combinations in the previous syntaxes. For troubleshooting, contact Wind
Information Co., Ltd.

Examples

Retrieve Current WDS Data for Security

Using a WDS connection, retrieve current data for a single security and display the data.
Then close the connection.

Create a WDS connection.

c = wind;

Format output data for currency.

 getdata

6-407

format bank

Using the 0001.HK security, retrieve the current high and low prices.

s = '0001.HK';
f = ["high","low"];
d = getdata(c,s,f)

d=1×2 table
 HIGH LOW
 _____ _____

 0001.HK 99.50 98.00

d is a table with one row for the single security. Each variable in the table corresponds to
each specified field.

Close the WDS connection.

close(c)

Retrieve Daily Current WDS Data

Using a WDS connection, retrieve current data for a single security for the day and
display the data.

Create a WDS connection.

c = wind;

Format output data for currency.

format bank

For the 0001.HK security, retrieve the high and low prices for the day using the WDS
connection. Use the name-value pair argument 'Cycle' to specify the period.

s = {'0001.HK'};
f = ["high","low"];
d = getdata(c,s,f,'Cycle','D')

6 Functions — Alphabetical List

6-408

d=1×2 table
 HIGH LOW
 _____ _____

 0001.HK 99.50 98.00

d is a table with a row for the security. The variables in the table correspond to the
specified fields.

Close the WDS connection.

close(c)

Input Arguments
c — WDS connection
connection object

WDS connection, specified as a connection object created with the wind function.

s — Securities
character vector | string scalar | cell array of character vectors | string array

Securities, specified as a character vector, string scalar, cell array of character vectors, or
string array. For a single security, use a character vector or string scalar. For multiple
securities, use a cell array of character vectors or string array.
Example: '0001.HK'
Data Types: char | string | cell

f — Fields
character vector | string scalar | cell array of character vectors | string array

Fields, specified as a character vector, string scalar, cell array of character vectors, or
string array. For a single field, use a character vector or string scalar. For multiple fields,
use a cell array of character vectors or string array.

For details about valid fields, contact Wind Information Co., Ltd.
Example: {"high","low"}

 getdata

6-409

Data Types: char | string | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: getdata(c,s,f,'TradeDate',datetime('yesterday')) retrieves
current WDS market data for yesterday.

TradeDate — Trade date
datetime scalar | numeric scalar | character vector | string scalar

Trade date, specified as the comma-separated pair consisting of 'TradeDate' and a
datetime scalar, numeric scalar, character vector, or string scalar.

If you do not specify a date, the getdata function sets the trade date to the current day.
Example: 731878
Example: datetime('yesterday')
Data Types: datetime | double | char | string

PriceAdj — Price adjustment
'N' | 'F' | 'B' | 'T'

Price adjustment, specified as the comma-separated pair consisting of 'PriceAdj' and
one of these values.

Value Description
'N' No
'F' Forward
'B' Backward
'T' As per selected ex-rights time

For details about these values, contact Wind Information Co., Ltd.

Cycle — Cycle
'D' | 'W' | 'M' | ...

6 Functions — Alphabetical List

6-410

Cycle, specified as the comma-separated pair consisting of 'Cycle' and one of these
values.

Value Description
'D' Daily
'W' Weekly
'M' Monthly
'Q' Quarterly
'S' Semi-annually
'Y' Annually

For details about these values, contact Wind Information Co., Ltd.

Output Arguments
d — Current WDS market data
table

Current WDS market data, returned as a table. The rows in the table correspond to the
securities specified in the s input argument. The variables in the table correspond to the
fields specified in the f input argument.

e — WDS error identifier
numeric scalar

WDS error identifier, returned as a numeric scalar. The value 0 indicates a successful
execution of the getdata function. Otherwise, for details about the error, contact Wind
Information Co., Ltd.

See Also
close | createorder | history | realtime | timeseries | wind

Topics
“Decide to Buy Shares Using Current and Historical WDS Data” on page 5-2

 getdata

6-411

External Websites
Wind Data Feed Services (WDS)

Introduced in R2018a

6 Functions — Alphabetical List

6-412

http://www.wind.com.cn/en/product/Wind.DataFeed.html

history
Historical WDS data

Syntax
d = history(c,s,f,startdate,enddate)
d = history(c,s,f,startdate,enddate,Name,Value)
[d,e] = history(___)

Description
d = history(c,s,f,startdate,enddate) returns the historical Wind Data Feed
Services (WDS) market data for the specified security and fields using the WDS
connection. Specify a date range for the historical data to return.

d = history(c,s,f,startdate,enddate,Name,Value) specifies additional options
using one or more name-value pair arguments. For example, 'Currency','EUR' returns
data in the Euro currency.

[d,e] = history(___) also returns the WDS error identifier using any of the input
argument combinations in the previous syntaxes. For troubleshooting, contact Wind
Information Co., Ltd.

Examples

Retrieve Historical WDS Data for Security

Using a WDS connection, retrieve historical data for a single security and display the
data.

Create a WDS connection.

c = wind;

 history

6-413

Format output data for currency.

format bank

Using the 0001.HK security, retrieve the open, high, low, and closing prices from August
10, 2017 through August 15, 2017.

s = '0001.HK';
f = ["open","high","low","close"];
startdate = '2017-08-10';
enddate = '2017-08-15';
d = history(c,s,f,startdate,enddate)

d=4×4 timetable
 Time OPEN HIGH LOW CLOSE
 ____________________ ______ ______ ______ ______

 10-Aug-2017 00:00:00 104.50 105.00 103.30 103.30
 11-Aug-2017 00:00:00 102.00 102.70 101.00 101.10
 14-Aug-2017 00:00:00 102.10 102.20 101.30 102.00
 15-Aug-2017 00:00:00 101.40 102.50 101.20 102.00

d is a timetable that contains one row for each trading day with the time and a variable
for each specified field.

Close the WDS connection.

close(c)

Retrieve Historical WDS Data in Specified Currency

Using a WDS connection, retrieve historical data for a single security and display the
data. Specify the currency for the data.

Create a WDS connection.

c = wind;

Format output data for currency.

format bank

6 Functions — Alphabetical List

6-414

Using the 0001.HK security, retrieve the open, high, low, and closing prices from August
10, 2017 through August 15, 2017. Specify the EUR currency by using the 'Currency'
name-value pair argument.

s = '0001.HK';
f = ["open","high","low","close"];
startdate = '2017-08-10';
enddate = '2017-08-15';
currency = 'EUR';
d = history(c,s,f,startdate,enddate,'Currency',currency)

d=4×4 timetable
 Time OPEN HIGH LOW CLOSE
 ____________________ _____ _____ _____ _____

 10-Aug-2017 00:00:00 11.37 11.43 11.24 11.24
 11-Aug-2017 00:00:00 11.10 11.18 10.99 11.00
 14-Aug-2017 00:00:00 11.05 11.06 10.97 11.04
 15-Aug-2017 00:00:00 11.01 11.13 10.99 11.07

d is a timetable that contains one row for each trading day with the time and a variable
for each specified field.

Close the WDS connection.

close(c)

Input Arguments
c — WDS connection
connection object

WDS connection, specified as a connection object created with the wind function.

s — Security
character vector | string scalar

Security, specified as a character vector or string scalar.
Example: '0001.HK'
Data Types: char | string

 history

6-415

f — Fields
character vector | string scalar | cell array of character vectors | string array

Fields, specified as a character vector, string scalar, cell array of character vectors, or
string array. For a single field, use a character vector or string scalar. For multiple fields,
use a cell array of character vectors or string array.

For details about valid fields, contact Wind Information Co., Ltd.
Example: {"high","low"}
Data Types: char | string | cell

startdate — Start date
datetime scalar | numeric scalar | character vector | string scalar

Start date of the historical date range, specified as a datetime scalar, numeric scalar,
character vector, or string scalar.
Example: 731878
Example: datetime('yesterday')
Data Types: datetime | double | char | string

enddate — End date
datetime scalar | numeric scalar | character vector | string scalar

End date of the historical date range, specified as a datetime scalar, numeric scalar,
character vector, or string scalar.
Example: 731878
Example: datetime('today')
Data Types: datetime | double | char | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: history(c,s,f,'Days','Weekdays','Currency','EUR') returns
historical WDS market data only for weekdays and in the Euro currency.

6 Functions — Alphabetical List

6-416

Currency — Currency
character vector | string scalar

Currency, specified as the comma-separated pair consisting of 'Currency' and a
character vector or string scalar that contains three characters identifying the ISO® code
for the currency. For example, specify 'USD' for the US currency.
Data Types: char | string

Days — Days
'Alldays' (default) | 'Weekdays'

Days, specified as the comma-separated pair consisting of 'Days' and the value
'Alldays' to return data for all days, or the value 'Weekdays' to return data for
weekdays only.

Fill — Fill
'Null' (default) | 'Previous'

Fill, specified as the comma-separated pair consisting of 'Fill' and the value 'Null' to
fill missing data with NULL values, or the value 'Previous' to fill missing data with
previous values.

Period — Period
'D' | 'W' | 'M' | ...

Period, specified as the comma-separated pair consisting of 'Period' and one of these
values.

Value Description
'D' Daily
'W' Weekly
'M' Monthly
'Q' Quarterly
'Y' Annually

For details about these values, contact Wind Information Co., Ltd.

PriceAdj — Price adjustment
'F' | 'B' | 'T' | ...

 history

6-417

Price adjustment, specified as the comma-separated pair consisting of 'PriceAdj' and
one of these values.

Value Description
'F' Forward
'B' Backward
'T' Fixed
'CP' Clean price
'DP' Dirty price
'MP' Market price
'YTM' Yield

For details about these values, contact Wind Information Co., Ltd.

TradingCalendar — Exchange code
character vector | string scalar

Exchange code, specified as the comma-separated pair consisting of
'TradingCalendar' and a character vector or string scalar. For example, specify
'NYSE' for the New York Stock Exchange.
Data Types: char | string

Output Arguments
d — Historical WDS market data
timetable

Historical WDS market data, returned as a timetable. The rows in the timetable
correspond to the dates in the date range, as specified by the startdate and enddate
input arguments. The variables in the timetable correspond to the specified fields in the f
input argument.

e — WDS error identifier
numeric scalar

6 Functions — Alphabetical List

6-418

WDS error identifier, returned as a numeric scalar. The value 0 indicates a successful
execution of the history function. Otherwise, for details about the error, contact Wind
Information Co., Ltd.

See Also
close | createorder | getdata | realtime | timeseries | wind

Topics
“Decide to Buy Shares Using Current and Historical WDS Data” on page 5-2

External Websites
Wind Data Feed Services (WDS)

Introduced in R2018a

 history

6-419

http://www.wind.com.cn/en/product/Wind.DataFeed.html

query
Query WDS account and order information

Syntax
d = query(c,q)
d = query(c,q,Name,Value)
[d,e] = query(___)

Description
d = query(c,q) returns account, order, and portfolio information associated with a
Wind Data Feed Services (WDS) account using the WDS connection and a query term.

d = query(c,q,Name,Value) specifies additional options using one or more name-
value pair arguments. For example, 'LogonID','1' returns information filtered by the
login identifier.

[d,e] = query(___) returns the WDS error identifier using any of the input argument
combinations in the previous syntaxes. For troubleshooting, contact Wind Information
Co., Ltd.

Examples

Query Account Information

Using a WDS connection, log in to the WDS order management system and query for
account information.

Create a WDS connection.

c = wind;

6 Functions — Alphabetical List

6-420

Log in to the WDS order management system using the WDS connection. Specify the
broker, branch, user name, password, and account type.

broker = "0000";
branch = "0";
capitalaccount = "1234567891011";
password = "abcdefghi";
accttype = "SHSZ";
dlogin = tradelogin(c,broker,branch, ...
 capitalaccount,password,accttype)

d =

 1×5 table

 LogonID LogonAccount AccountType ErrorCode ErrorMsg
 _______ _______________ ___________ _________ ________

 1 '1234567891011' 'SZSHA' 0 ''

d is a table with these variables:

• Login identifier
• Account number
• Account type
• Error code
• Error message

If the error code is 0 and the message is an empty character vector, then the login is
successful.

Query for account information using the WDS connection and the Account query term.

q = 'Account';
d = query(c,q)

d =

 4×10 table

 ShareholderStatus MainShareholderFlag AccountType MarketType Shareholder AssetAccount Customer Seat ErrorCode ErrorMsg
 _________________ ___________________ ___________ __________ ____________ _______________ _____________ _________ _________ ________

 query

6-421

 48 0 'SZSHA' 'SH' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''
 48 0 'SHB' 'SH' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''
 48 0 'SZSHA' 'SZ' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''
 48 0 'SZB' 'SZ' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''

d is a table with these variables:

• Shareholder status
• Shareholder flag
• Account type
• Market type
• Shareholder
• Account number
• Customer number
• Seat
• Error code
• Error message

Log out from the WDS order management system using the login identifier returned by
the tradelogin function.

logonid = dlogin.LogonID;
d = tradelogout(c,logonid)

d =

 1×3 table

 LogonID ErrorCode ErrorMsg
 _______ _________ ________

 '1' 0 'logout'

d is a table with these variables:

• Login identifier
• Error code
• Error message

6 Functions — Alphabetical List

6-422

Close the WDS connection.

close(c)

Query Account Information Using Login Identifier

Using a WDS connection, log in to the WDS order management system and query for
account information by using the login identifier.

Create a WDS connection.

c = wind;

Log in to the WDS order management system using the WDS connection. Specify the
broker, branch, user name, password, and account type.

broker = "0000";
branch = "0";
capitalaccount = "1234567891011";
password = "abcdefghi";
accttype = "SHSZ";
d = tradelogin(c,broker,branch, ...
 capitalaccount,password,accttype)

d =

 1×5 table

 LogonID LogonAccount AccountType ErrorCode ErrorMsg
 _______ _______________ ___________ _________ ________

 1 '1234567891011' 'SZSHA' 0 ''

d is a table with these variables:

• Login identifier
• Account number
• Account type
• Error code
• Error message

 query

6-423

If the error code is 0 and the message is an empty character vector, then the login is
successful.

Query for account information using the WDS connection, Account query term, and login
identifier. Use the login identifier returned by the tradelogin function with the
'LogonID' name-value pair argument.

q = 'Account';
logonid = d.LogonID;
d = query(c,q,'LogonID',logonid)

d =

 4×10 table

 ShareholderStatus MainShareholderFlag AccountType MarketType Shareholder AssetAccount Customer Seat ErrorCode ErrorMsg
 _________________ ___________________ ___________ __________ ____________ _______________ _____________ _________ _________ ________

 48 0 'SZSHA' 'SH' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''
 48 0 'SHB' 'SH' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''
 48 0 'SZSHA' 'SZ' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''
 48 0 'SZB' 'SZ' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''

d is a table with these variables:

• Shareholder status
• Shareholder flag
• Account type
• Market type
• Shareholder
• Account number
• Customer number
• Seat
• Error code
• Error message

Log out from the WDS order management system using the login identifier.

d = tradelogout(c,logonid)

6 Functions — Alphabetical List

6-424

d =

 1×3 table

 LogonID ErrorCode ErrorMsg
 _______ _________ ________

 '1' 0 'logout'

d is a table with these variables:

• Login identifier
• Error code
• Error message

Close the WDS connection.

close(c)

Input Arguments
c — WDS connection
connection object

WDS connection, specified as a connection object created with the wind function.

q — Query term
'Capital' | 'Position' | 'Order' | ...

Query term, specified as one of these values.

Query Term Value Description
'Account' WDS account information
'Capital' Current account values
'CreditFund' Credit status associated with the WDS account
'CreditPos' Credit position
'Liabilities' Debt status associated with the WDS account
'LogonID' User name information

 query

6-425

Query Term Value Description
'Order' Orders associated with the WDS account
'Portfolio' Portfolio information from asset management system
'Position' Portfolio positions associated with the WDS account
'ShortInfo' Securities lending information
'Trade' Trading information for the current day

You can specify these values using character vectors or string scalars.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: d = query(c,'Order','LogonID','1','OrderNumber','12') returns
order information, filtered by the login identifier, for orders that have order number '12'.

LogonID — Login identifier
character vector | string scalar

Login identifier, specified as the comma-separated pair consisting of 'LogonID' and a
character vector or string scalar. Set the value of the 'LogonID' name-value pair
argument by using the LogonID variable in the d output argument of the tradelogin
function.

For example, d = query(c,'Order','LogonID','1') returns order information only
for the orders associated with the login identifier '1'.
Example: '1'
Data Types: char | string

RequestID — Request identifier
character vector | string scalar

Request identifier, specified as the comma-separated pair consisting of 'RequestID' and
a character vector or string scalar. Set the value of the 'RequestID' name-value pair

6 Functions — Alphabetical List

6-426

argument by using the RequestID variable in the d output argument of the
createorder function.

For example, d = query(c,'Order','RequestID','12') returns order information
only for the orders associated with the request identifier '12'.
Example: "27"
Data Types: double

OrderNumber — Order number
character vector | string scalar

Order number, specified as the comma-separated pair consisting of 'OrderNumber' and
a character vector or string scalar. To find the value, set the q input argument of the
query function to 'Order'. Then, use the OrderNumber variable in the d output
argument of the query function.

For example, d = query(c,'Order','OrderNumber','10') returns order
information only for the orders associated with the order number '10'.
Example: "6"
Data Types: double

OrderType — Order type
'All' (default) | 'Withdrawable'

Order type, specified as the comma-separated pair consisting of 'OrderType' and the
value 'All' for all orders or 'Withdrawable' for orders that can be withdrawn.

For example, d = query(c,'Order','OrderType','All') returns all order types.

PortfolioNo — Portfolio number
character vector | string scalar

Portfolio number, specified as the comma-separated pair consisting of 'PortfolioNo'
and a character vector or string scalar.

For example, d = query(c,'Portfolio','PortfolioNo','3') returns portfolio
information for the portfolio number '3'.
Example: '3'
Data Types: char | string

 query

6-427

Output Arguments
d — Account information
table

Account information about the account, order, and portfolio, returned as a table. The
variables in the table depend on the specified query in the q input argument.

For details about these variables, contact Wind Information Co., Ltd.

e — WDS error identifier
numeric scalar

WDS error identifier, returned as a numeric scalar. The value 0 indicates a successful
execution of the query function. Otherwise, for details about the error, contact Wind
Information Co., Ltd.

See Also
close | createorder | tradelogin | tradelogout | wind

Topics
“Create Order Using Real-Time Snapshot WDS Data” on page 5-4

External Websites
Wind Data Feed Services (WDS)

Introduced in R2018a

6 Functions — Alphabetical List

6-428

http://www.wind.com.cn/en/product/Wind.DataFeed.html

realtime
Snapshot and subscription WDS data

Syntax
d = realtime(c,s,f)
[d,e] = realtime(c,s,f)

requestid = realtime(c,s,f,eventhandler)
[requestid,e] = realtime(c,s,f,eventhandler)

Description
d = realtime(c,s,f) returns the real-time snapshot Wind Data Feed Services (WDS)
data for the specified securities and fields using the WDS connection.

[d,e] = realtime(c,s,f) also returns the WDS error identifier. For troubleshooting,
contact Wind Information Co., Ltd.

requestid = realtime(c,s,f,eventhandler) subscribes to the specified securities
by using the specified fields and an event handler function.

[requestid,e] = realtime(c,s,f,eventhandler) also returns the WDS error
identifier.

Examples

Retrieve WDS Snapshot Data

Using a WDS connection, retrieve snapshot data for two securities.

Create a WDS connection.

c = wind;

 realtime

6-429

Format output data for currency.

format bank

Using the 0001.HK and 0003.HK securities and the WDS connection, retrieve real-time
data for the last price and volume fields.

s = {'0001.HK','0003.HK'};
f = {'rt_last','rt_vol'};

d = realtime(c,s,f)

d =

 2×3 timetable

 Time Codes RT_LAST RT_VOL
 ____________________ _________ _______ ___________

 28-Nov-2017 10:54:14 '0001.HK' 97.75 3199866.00
 28-Nov-2017 10:54:14 '0003.HK' 15.28 19995745.00

d is a timetable that contains rows for each security with the time and these variables:

• Security
• Last price
• Volume

Close the WDS connection.

close(c)

Retrieve WDS Subscription Data

Using a WDS connection, subscribe to two securities and process real-time events by
using an event handler function. Then cancel the subscription.

Create a WDS connection.

c = wind;

Format output data for currency.

6 Functions — Alphabetical List

6-430

format bank

Using the 0002.HK and 0003.HK securities and the WDS connection, retrieve real-time
data for the last price, volume, and last volume fields. Process real-time data events using
the sample event handler function windEventHandler. You can use the sample event
handler function or create a custom event handler function to process events.

s = {'0002.HK','0003.HK'};
f = {'rt_last','rt_vol','rt_last_vol'}};

requestid = realtime(c,s,f,@(varargin)windEventHandler(varargin))

requestid =

 uint64

 5

requestid is the request identifier associated with the subscription. The event handler
function windEventHandler creates a variable in the MATLAB workspace named
winddata. This variable contains the subscription data.

Display the subscription data.

winddata

winddata =

 2×4 timetable

 Time Codes RT_LAST RT_VOL RT_LAST_VOL
 ____________________ _________ _______ ___________ ___________

 28-Nov-2017 10:55:25 '0002.HK' 81.30 2106274.00 422500.00
 28-Nov-2017 10:55:25 '0003.HK' 15.28 19995745.00 1398000.00

winddata is a timetable that contains a row for each security with the time and these
variables:

• Security
• Last price
• Volume
• Last volume

 realtime

6-431

Stop the data subscription using the request identifier.

stop(c,requestid)

Close the WDS connection.

close(c)

Input Arguments
c — WDS connection
connection object

WDS connection, specified as a connection object created with the wind function.

s — Securities
character vector | string scalar | cell array of character vectors | string array

Securities, specified as a character vector, string scalar, cell array of character vectors, or
string array. For a single security, use a character vector or string scalar. For multiple
securities, use a cell array of character vectors or string array.
Example: '0001.HK'
Data Types: char | string | cell

f — Fields
character vector | string scalar | cell array of character vectors | string array

Fields, specified as a character vector, string scalar, cell array of character vectors, or
string array. For a single field, use a character vector or string scalar. For multiple fields,
use a cell array of character vectors or string array.

For details about valid fields, contact Wind Information Co., Ltd.
Example: {"high","low"}
Data Types: char | string | cell

eventhandler — Event handler function
function handle

6 Functions — Alphabetical List

6-432

Event handler function, specified as a function handle. You can use the example event
handling function windEventHandler to process real-time WDS events. Or, you can
define a custom event handler function to process events of your choice.

The event handler function windEventHandler creates the variable winddata in the
MATLAB workspace. The windEventHandler function returns winddata as a timetable
that contains real-time WDS data. If an error occurs, the function returns winddata as a
table that contains an error code. For troubleshooting, contact Wind Information Co., Ltd.

The winddata timetable contains rows for each real-time WDS event with the time. The
first variable in this timetable is the specified securities in the s input argument. The
remaining variables are the specified fields in the f input argument.

To access the code of the function, enter edit windEventHandler at the command line.

To define a custom event handler function:

1 Choose the WDS events to process, monitor, or evaluate.
2 Decide how the custom event handler processes these events.
3 Determine the input and output arguments for the custom event handler function.
4 Write the code for the custom event handler function. For details, see “Create

Functions in Files” (MATLAB).

After defining the function, you can run it by passing the name of the function as a
function handle. For details about function handles, see “Create Function Handle”
(MATLAB).
Example: @(varargin)windEventHandler(varargin)
Data Types: function_handle

Output Arguments
d — Real-time snapshot WDS data
timetable

Real-time snapshot WDS data, returned as a timetable. The rows of the timetable
correspond to the real-time snapshots with the time. The first variable in the timetable is
the specified securities in the s input argument. The remaining variables in the timetable
are the specified fields in the f input argument.

 realtime

6-433

requestid — Request identifier
numeric scalar

Request identifier for the real-time data subscription, returned as a numeric scalar. To
stop the real-time data subscription, specify the requestid output argument in the stop
function.

e — WDS error identifier
numeric scalar

WDS error identifier, returned as a numeric scalar. The value 0 indicates a successful
execution of the realtime function. Otherwise, for details about the error, contact Wind
Information Co., Ltd.

See Also
close | createorder | getdata | history | stop | timeseries | wind

Topics
“Create Order Using Real-Time Snapshot WDS Data” on page 5-4

External Websites
Wind Data Feed Services (WDS)

Introduced in R2018a

6 Functions — Alphabetical List

6-434

http://www.wind.com.cn/en/product/Wind.DataFeed.html

stop
Cancel subscription WDS data request

Syntax
stop(c,requestid)

Description
stop(c,requestid) cancels the Wind Data Feed Services (WDS) subscription data
request specified by the request identifier using the WDS connection.

Examples

Retrieve WDS Subscription Data

Using a WDS connection, subscribe to two securities and process real-time events by
using an event handler function. Then cancel the subscription.

Create a WDS connection.

c = wind;

Format output data for currency.

format bank

Using the 0002.HK and 0003.HK securities and the WDS connection, retrieve real-time
data for the last price, volume, and last volume fields. Process real-time data events using
the sample event handler function windEventHandler. You can use the sample event
handler function or create a custom event handler function to process events.

s = {'0002.HK','0003.HK'};
f = {'rt_last','rt_vol','rt_last_vol'}};

 stop

6-435

requestid = realtime(c,s,f,@(varargin)windEventHandler(varargin))

requestid =

 uint64

 5

requestid is the request identifier associated with the subscription. The event handler
function windEventHandler creates a variable in the MATLAB workspace named
winddata. This variable contains the subscription data.

Display the subscription data.

winddata

winddata =

 2×4 timetable

 Time Codes RT_LAST RT_VOL RT_LAST_VOL
 ____________________ _________ _______ ___________ ___________

 28-Nov-2017 10:55:25 '0002.HK' 81.30 2106274.00 422500.00
 28-Nov-2017 10:55:25 '0003.HK' 15.28 19995745.00 1398000.00

winddata is a timetable that contains a row for each security with the time and these
variables:

• Security
• Last price
• Volume
• Last volume

Stop the data subscription using the request identifier.

stop(c,requestid)

Close the WDS connection.

6 Functions — Alphabetical List

6-436

close(c)

Input Arguments
c — WDS connection
connection object

WDS connection, specified as a connection object created with the wind function.

requestid — Request identifier
numeric scalar

Request identifier, specified as a numeric scalar created by the realtime function.
Example: 5
Data Types: uint64

See Also
close | realtime | wind

Topics
“Create Order Using Real-Time Snapshot WDS Data” on page 5-4

External Websites
Wind Data Feed Services (WDS)

Introduced in R2018a

 stop

6-437

http://www.wind.com.cn/en/product/Wind.DataFeed.html

timeseries
Intraday tick WDS data

Syntax
d = timeseries(c,s,f,t)
d = timeseries(c,s,f,{startdate,enddate})
d = timeseries(c,s,f,{startdate,enddate},interval)
d = timeseries(c,s,f,{startdate,enddate},interval,Name,Value)
[d,e] = timeseries(___)

Description
d = timeseries(c,s,f,t) returns raw intraday tick Wind Data Feed Services (WDS)
data for the specified security, fields, and date using the WDS connection.

d = timeseries(c,s,f,{startdate,enddate}) returns raw WDS intraday tick data
for the specified date range.

d = timeseries(c,s,f,{startdate,enddate},interval) specifies an interval for
the intraday data to return.

d = timeseries(c,s,f,{startdate,enddate},interval,Name,Value) specifies
additional options using one or more name-value pair arguments. These options specify a
time range for each day in the specified date range. For example,
'PeriodStart',datetime('10:30:00') sets a time range that starts at 10:30 AM
and ends at the end of the trading day.

[d,e] = timeseries(___) also returns the WDS error identifier using any of the
input argument combinations in the previous syntaxes. For troubleshooting, contact Wind
Information Co., Ltd.

Examples

6 Functions — Alphabetical List

6-438

Retrieve Intraday Tick WDS Data

Using a WDS connection, retrieve intraday tick data for a single security and display the
data.

Create a WDS connection.

c = wind;

Format output data for currency.

format bank

For the 600000.SH security, retrieve the intraday tick data for high and low prices.
Retrieve ticks for the current day using the WDS connection.

s = {'600000.SH'};
f = ["high","low"];
t = datetime('now');
d = timeseries(c,s,f,t);

d is a timetable that contains a row for each tick with the time and a variable for each
specified field.

Display the first three rows of intraday tick data.

head(d,3)

ans=3×2 timetable
 Time high low
 ____________________ _____ _____

 28-Nov-2017 13:17:42 13.07 12.92
 28-Nov-2017 13:17:45 13.07 12.92
 28-Nov-2017 13:17:48 13.07 12.92

Close the WDS connection.

close(c)

 timeseries

6-439

Retrieve Intraday Tick WDS Data Using Date Range

Using a WDS connection, retrieve intraday tick data for a single security and display the
data. Specify a date range for the intraday tick data to return.

Create a WDS connection.

c = wind;

Format output data for currency.

format bank

For the 600000.SH security, retrieve the intraday tick data for high and low prices.
Retrieve ticks from November 20, 2017 through November 23, 2017 using the WDS
connection.

s = {'600000.SH'};
f = ["high","low"];
startdate = datetime('2017-11-20');
enddate = datetime('2017-11-23');
d = timeseries(c,s,f,{startdate,enddate});

d is a timetable that contains a row for each tick with the time and a variable for each
specified field.

Display the last eight rows of intraday tick data.

tail(d)

ans=8×2 timetable
 Time high low
 ____________________ _____ _____

 22-Nov-2017 14:59:46 13.44 13.00
 22-Nov-2017 14:59:49 13.44 13.00
 22-Nov-2017 14:59:52 13.44 13.00
 22-Nov-2017 14:59:55 13.44 13.00
 22-Nov-2017 14:59:58 13.44 13.00
 22-Nov-2017 15:00:01 13.44 13.00
 22-Nov-2017 15:00:02 13.44 13.00
 22-Nov-2017 15:00:02 13.44 13.00

Close the WDS connection.

6 Functions — Alphabetical List

6-440

close(c)

Retrieve Intraday Tick WDS Data Using Interval

Using a WDS connection, retrieve intraday tick data for a single security and display the
data. Specify a date range for the intraday tick data to return. Also, specify the interval to
aggregate the tick data.

Create a WDS connection.

c = wind;

Format output data for currency.

format bank

For the 600000.SH security, retrieve the intraday tick data for high and low prices.
Retrieve ticks from November 20, 2017 through November 23, 2017 using the WDS
connection. Specify 1-minute bars to aggregate the data.

s = {'600000.SH'};
f = ["high","low"];
startdate = datetime('2017-11-20');
enddate = datetime('2017-11-23');
interval = 1;
d = timeseries(c,s,f,{startdate,enddate},interval);

d is a timetable that contains a row for each aggregated tick with the time and a variable
for each specified field.

Display the last eight rows of the aggregated intraday tick data.

tail(d)

ans=8×2 timetable
 Time high low
 ____________________ _____ _____

 22-Nov-2017 14:53:00 13.22 13.21
 22-Nov-2017 14:54:00 13.23 13.21
 22-Nov-2017 14:55:00 13.23 13.22
 22-Nov-2017 14:56:00 13.23 13.22

 timeseries

6-441

 22-Nov-2017 14:57:00 13.23 13.22
 22-Nov-2017 14:58:00 13.23 13.22
 22-Nov-2017 14:59:00 13.24 13.21
 22-Nov-2017 15:00:00 13.23 13.23

Close the WDS connection.

close(c)

Retrieve Intraday Tick WDS Data Using Time Range

Using a WDS connection, retrieve intraday tick data for a single security and display the
data. Specify a date range for the intraday tick data to return. Also, specify the interval to
aggregate the tick data. Then, specify the time range for each day in the date range.

Create a WDS connection.

c = wind;

Format output data for currency.

format bank

For the 600000.SH security, retrieve the intraday tick data for high and low prices.
Retrieve ticks from November 20, 2017 through November 23, 2017 using the WDS
connection. Specify 1-minute bars to aggregate the data. Also, specify the time range
from 9:30 AM through 10:30 AM using the 'PeriodStart' and 'PeriodEnd' name-
value pair arguments.

s = {'600000.SH'};
f = ["high","low"];
startdate = datetime('2017-11-20');
enddate = datetime('2017-11-23');
interval = 1;
starttime = datetime('09:30:00');
endtime = datetime('10:30:00');
d = timeseries(c,s,f,{startdate,enddate},interval,'PeriodStart',starttime,'PeriodEnd',endtime);

d is a timetable that contains a row for each aggregated tick with the time and a variable
for each specified field.

6 Functions — Alphabetical List

6-442

Display the first three rows of the aggregated intraday tick data.

head(d,3)

ans=3×2 timetable
 Time high low
 ____________________ _____ _____

 20-Nov-2017 09:30:00 12.72 12.68
 20-Nov-2017 09:31:00 12.75 12.71
 20-Nov-2017 09:32:00 12.77 12.73

Close the WDS connection.

close(c)

Input Arguments
c — WDS connection
connection object

WDS connection, specified as a connection object created with the wind function.

s — Security
character vector | string scalar

Security, specified as a character vector or string scalar.
Example: '0001.HK'
Data Types: char | string

f — Fields
character vector | string scalar | cell array of character vectors | string array

Fields, specified as a character vector, string scalar, cell array of character vectors, or
string array. For a single field, use a character vector or string scalar. For multiple fields,
use a cell array of character vectors or string array.

For details about valid fields, contact Wind Information Co., Ltd.
Example: {"high","low"}

 timeseries

6-443

Data Types: char | string | cell

t — Date
datetime scalar | numeric scalar | character vector | string scalar

Date, specified as a datetime scalar, numeric scalar, character vector, or string scalar.
Example: datetime('today')
Data Types: datetime | double | char | string

startdate — Start date
datetime scalar | numeric scalar | character vector | string scalar

Start date, specified as a datetime scalar, numeric scalar, character vector, or string
scalar.
Example: datetime('2017-08-10')
Data Types: datetime | double | char | string

enddate — End date
datetime scalar | numeric scalar | character vector | string scalar

End date, specified as a datetime scalar, numeric scalar, character vector, or string
scalar.
Example: datetime('2017-08-19')
Data Types: datetime | double | char | string

interval — Interval
numeric scalar

Interval for aggregating interval tick data into minute bars, specified as a numeric scalar.
Example: 1
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

6 Functions — Alphabetical List

6-444

Example: d = timeseries(c,'0001.HK','open',
{'2017-08-10','2017-08-19'},1,'PeriodStart',datetime('now')-.25,'Per
iodEnd',datetime('now')) returns aggregated ticks for the open price in 1-minute
bars for the 0001.HK security from August 10, 2017 through August 19, 2017. This
syntax returns data for ticks that occur within 6 hours of the current time in each day.

PeriodStart — Start time
datetime scalar | numeric scalar | character vector | string scalar

Start time, specified as the comma-separated pair consisting of 'PeriodStart' and a
datetime scalar, numeric scalar, character vector, or string scalar.

Use the 'PeriodStart' name-value pair argument with the PeriodEnd name-value
pair argument to specify the time range for each day in the date range from startdate
through enddate.

If you do not specify the 'PeriodEnd' name-value pair argument, the timeseries
function uses the end of the trading day as the end of the time range.
Example: datetime('now')-.5
Data Types: datetime | double | char | string

PeriodEnd — End time
datetime scalar | numeric scalar | character vector | string scalar

End time, specified as the comma-separated pair consisting of 'PeriodEnd' and a
datetime scalar, numeric scalar, character vector, or string scalar.

Use the 'PeriodEnd' name-value pair argument with the PeriodStart name-value
pair argument to specify the time range for each day in the date range from startdate
through enddate.

If you do not specify the 'PeriodStart' name-value pair argument, the timeseries
function uses the start of the trading day as the start of the time range.
Example: datetime('now')
Data Types: datetime | double | char | string

 timeseries

6-445

Output Arguments
d — Intraday tick WDS data
timetable

Intraday tick WDS data, returned as a timetable. The rows of the timetable correspond to
the date range specified by startdate and enddate and, optionally, the time range
specified by the PeriodStart and PeriodEnd name-value pair arguments. The variables
of the timetable correspond to the fields specified in the f input argument.

e — WDS error identifier
numeric scalar

WDS error identifier, returned as a numeric scalar. The value 0 indicates a successful
execution of the timeseries function. Otherwise, for details about the error, contact
Wind Information Co., Ltd.

See Also
close | createorder | getdata | history | realtime | wind

Topics
“Decide to Buy Shares Using Current and Historical WDS Data” on page 5-2

External Websites
Wind Data Feed Services (WDS)

Introduced in R2018a

6 Functions — Alphabetical List

6-446

http://www.wind.com.cn/en/product/Wind.DataFeed.html

tradelogin
Log in to WDS order management system

Syntax
d = tradelogin(c,broker,branch,capitalaccount,password,accttype)
[d,e] = tradelogin(c,broker,branch,capitalaccount,password,accttype)

Description
d = tradelogin(c,broker,branch,capitalaccount,password,accttype)
returns login information after logging in to the Wind Data Feed Services (WDS) order
management system using:

• WDS connection
• Broker
• Branch
• Capital account
• Password
• Account type

[d,e] = tradelogin(c,broker,branch,capitalaccount,password,accttype)
also returns the WDS error identifier. For troubleshooting, contact Wind Information Co.,
Ltd.

Examples

Query Account Information Using Login Identifier

Using a WDS connection, log in to the WDS order management system and query for
account information by using the login identifier.

 tradelogin

6-447

Create a WDS connection.

c = wind;

Log in to the WDS order management system using the WDS connection. Specify the
broker, branch, user name, password, and account type.

broker = "0000";
branch = "0";
capitalaccount = "1234567891011";
password = "abcdefghi";
accttype = "SHSZ";
d = tradelogin(c,broker,branch, ...
 capitalaccount,password,accttype)

d =

 1×5 table

 LogonID LogonAccount AccountType ErrorCode ErrorMsg
 _______ _______________ ___________ _________ ________

 1 '1234567891011' 'SZSHA' 0 ''

d is a table with these variables:

• Login identifier
• Account number
• Account type
• Error code
• Error message

If the error code is 0 and the message is an empty character vector, then the login is
successful.

Query for account information using the WDS connection, Account query term, and login
identifier. Use the login identifier returned by the tradelogin function with the
'LogonID' name-value pair argument.

q = 'Account';
logonid = d.LogonID;
d = query(c,q,'LogonID',logonid)

6 Functions — Alphabetical List

6-448

d =

 4×10 table

 ShareholderStatus MainShareholderFlag AccountType MarketType Shareholder AssetAccount Customer Seat ErrorCode ErrorMsg
 _________________ ___________________ ___________ __________ ____________ _______________ _____________ _________ _________ ________

 48 0 'SZSHA' 'SH' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''
 48 0 'SHB' 'SH' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''
 48 0 'SZSHA' 'SZ' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''
 48 0 'SZB' 'SZ' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''

d is a table with these variables:

• Shareholder status
• Shareholder flag
• Account type
• Market type
• Shareholder
• Account number
• Customer number
• Seat
• Error code
• Error message

Log out from the WDS order management system using the login identifier.

d = tradelogout(c,logonid)

d =

 1×3 table

 LogonID ErrorCode ErrorMsg
 _______ _________ ________

 '1' 0 'logout'

d is a table with these variables:

 tradelogin

6-449

• Login identifier
• Error code
• Error message

Close the WDS connection.

close(c)

Input Arguments
c — WDS connection
connection object

WDS connection, specified as a connection object created with the wind function.

broker — Broker specification
character vector | string scalar

Broker specification, specified as a character vector or string scalar.
Example: "0000"
Data Types: char | string

branch — Branch name
character vector | string scalar

Branch name, specified as a character vector or string scalar.
Example: "0"
Data Types: char | string

capitalaccount — User name
character vector | string scalar

User name of the WDS account, specified as a character vector or string scalar. For
credentials, contact Wind Information Co., Ltd.
Example: "1234567891011"
Data Types: char | string

6 Functions — Alphabetical List

6-450

password — Password
character vector | string scalar

Password of the WDS account, specified as a character vector or string scalar. For
credentials, contact Wind Information Co., Ltd.
Example: "abcdefghi"
Data Types: char | string

accttype — Account type
character vector | string scalar

Account type, specified as a character vector or string scalar.
Example: "SHSZ"
Data Types: char | string

Output Arguments
d — Login information
table

Login information, returned as a table with these variables:

• Login identifier
• Account number
• Account type
• Error code
• Error message

e — WDS error identifier
numeric scalar

WDS error identifier, returned as a numeric scalar. The value 0 indicates a successful
execution of the tradelogin function. Otherwise, for details about the error, contact
Wind Information Co., Ltd.

 tradelogin

6-451

See Also
close | createorder | query | tradelogout | wind

Topics
“Create Order Using Real-Time Snapshot WDS Data” on page 5-4

External Websites
Wind Data Feed Services (WDS)

Introduced in R2018a

6 Functions — Alphabetical List

6-452

http://www.wind.com.cn/en/product/Wind.DataFeed.html

tradelogout
Log out from WDS order management system

Syntax
d = tradelogout(c,logonid)
[d,e] = tradelogout(c,logonid)

Description
d = tradelogout(c,logonid) returns logout information after logging out from the
Wind Data Feed Services (WDS) order management system using the WDS connection
and the login identifier.

[d,e] = tradelogout(c,logonid) also returns the WDS error identifier. For
troubleshooting, contact Wind Information Co., Ltd.

Examples

Query Account Information Using Login Identifier

Using a WDS connection, log in to the WDS order management system and query for
account information by using the login identifier.

Create a WDS connection.

c = wind;

Log in to the WDS order management system using the WDS connection. Specify the
broker, branch, user name, password, and account type.

broker = "0000";
branch = "0";
capitalaccount = "1234567891011";

 tradelogout

6-453

password = "abcdefghi";
accttype = "SHSZ";
d = tradelogin(c,broker,branch, ...
 capitalaccount,password,accttype)

d =

 1×5 table

 LogonID LogonAccount AccountType ErrorCode ErrorMsg
 _______ _______________ ___________ _________ ________

 1 '1234567891011' 'SZSHA' 0 ''

d is a table with these variables:

• Login identifier
• Account number
• Account type
• Error code
• Error message

If the error code is 0 and the message is an empty character vector, then the login is
successful.

Query for account information using the WDS connection, Account query term, and login
identifier. Use the login identifier returned by the tradelogin function with the
'LogonID' name-value pair argument.

q = 'Account';
logonid = d.LogonID;
d = query(c,q,'LogonID',logonid)

d =

 4×10 table

 ShareholderStatus MainShareholderFlag AccountType MarketType Shareholder AssetAccount Customer Seat ErrorCode ErrorMsg
 _________________ ___________________ ___________ __________ ____________ _______________ _____________ _________ _________ ________

 48 0 'SZSHA' 'SH' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''
 48 0 'SHB' 'SH' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''
 48 0 'SZSHA' 'SZ' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''

6 Functions — Alphabetical List

6-454

 48 0 'SZB' 'SZ' '0123456789' '1234567891011' '12345678910' '0001000' 0 ''

d is a table with these variables:

• Shareholder status
• Shareholder flag
• Account type
• Market type
• Shareholder
• Account number
• Customer number
• Seat
• Error code
• Error message

Log out from the WDS order management system using the login identifier.

d = tradelogout(c,logonid)

d =

 1×3 table

 LogonID ErrorCode ErrorMsg
 _______ _________ ________

 '1' 0 'logout'

d is a table with these variables:

• Login identifier
• Error code
• Error message

Close the WDS connection.

 tradelogout

6-455

close(c)

Input Arguments
c — WDS connection
connection object

WDS connection, specified as a connection object created with the wind function.

logonid — Login identifier
character vector | string scalar

Login identifier, specified as a character vector or string scalar. Specify the value of the
login identifier by using the LogonID variable in the d output argument of the
tradelogin function. For example, enter logonid = d.LogonID; at the command
line.
Example: '1'
Data Types: char | string

Output Arguments
d — Logout information
table

Logout information, returned as a table with these variables:

• Login identifier
• Error code
• Error message

e — WDS error identifier
numeric scalar

WDS error identifier, returned as a numeric scalar. The value 0 indicates a successful
execution of the tradelogout function. Otherwise, for details about the error, contact
Wind Information Co., Ltd.

6 Functions — Alphabetical List

6-456

See Also
close | createorder | query | tradelogin | wind

Topics
“Create Order Using Real-Time Snapshot WDS Data” on page 5-4

External Websites
Wind Data Feed Services (WDS)

Introduced in R2018a

 tradelogout

6-457

http://www.wind.com.cn/en/product/Wind.DataFeed.html

